医学应用的并行关联规则挖掘

G. Zhang, C. Xu, P. Sheu, H. Yamaguchi
{"title":"医学应用的并行关联规则挖掘","authors":"G. Zhang, C. Xu, P. Sheu, H. Yamaguchi","doi":"10.1109/BIBE.2011.31","DOIUrl":null,"url":null,"abstract":"For real-time applications that consist of massive number of rules, partitioning of the rules to support parallel processing is important. This paper proposes a suite of algorithms called GAPCM for parallel processing of massive number of rules. By considering even distribution, minimal waiting time and minimal inter-processor communication, we propose three algorithms for subnet allocation, and apply these algorithms to association rule mining.","PeriodicalId":391184,"journal":{"name":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parallel Association Rule Mining for Medical Applications\",\"authors\":\"G. Zhang, C. Xu, P. Sheu, H. Yamaguchi\",\"doi\":\"10.1109/BIBE.2011.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For real-time applications that consist of massive number of rules, partitioning of the rules to support parallel processing is important. This paper proposes a suite of algorithms called GAPCM for parallel processing of massive number of rules. By considering even distribution, minimal waiting time and minimal inter-processor communication, we propose three algorithms for subnet allocation, and apply these algorithms to association rule mining.\",\"PeriodicalId\":391184,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2011.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2011.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对于由大量规则组成的实时应用程序,划分规则以支持并行处理非常重要。本文提出了一套用于并行处理大量规则的GAPCM算法。在考虑均匀分布、最小等待时间和最小处理器间通信的基础上,提出了三种子网分配算法,并将其应用于关联规则挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Association Rule Mining for Medical Applications
For real-time applications that consist of massive number of rules, partitioning of the rules to support parallel processing is important. This paper proposes a suite of algorithms called GAPCM for parallel processing of massive number of rules. By considering even distribution, minimal waiting time and minimal inter-processor communication, we propose three algorithms for subnet allocation, and apply these algorithms to association rule mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信