基于OMP和牛顿法的多天线GNSS接收机多径缓解

L. Weiland, Thomas Wiese, W. Utschick
{"title":"基于OMP和牛顿法的多天线GNSS接收机多径缓解","authors":"L. Weiland, Thomas Wiese, W. Utschick","doi":"10.1109/CAMSAP.2017.8313162","DOIUrl":null,"url":null,"abstract":"We consider multipath mitigation for multi-antenna GNSS receivers using the maximum likelihood (ML) principle and Newton's method (NM). If good initial estimates for the parameters of all multipath components are available, NM is a very effective tool to find the global optimum of the ML cost function and, in particular, NM yields a very accurate estimate for the delay of the line-of-sight path. By introducing a finite grid for the parameters, algorithms from the field of sparse recovery, e.g., the orthogonal matching pursuit (OMP) algorithm, can be used as initialization schemes. In this paper, we propose two extensions of the OMP algorithm that use grid-less refinement steps, which are themselves based on NM applied to marginals of the ML objective. As numerical simulations show, initializing NM using OMP with grid-less refinement steps improves the estimation performance in the high signal-to-noise power ratio (SNR) regime if compared to, e.g., initialization using standard grid-based OMP or the SAGE algorithm.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multipath mitigation using OMP and newton's method for multi-antenna GNSS receivers\",\"authors\":\"L. Weiland, Thomas Wiese, W. Utschick\",\"doi\":\"10.1109/CAMSAP.2017.8313162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider multipath mitigation for multi-antenna GNSS receivers using the maximum likelihood (ML) principle and Newton's method (NM). If good initial estimates for the parameters of all multipath components are available, NM is a very effective tool to find the global optimum of the ML cost function and, in particular, NM yields a very accurate estimate for the delay of the line-of-sight path. By introducing a finite grid for the parameters, algorithms from the field of sparse recovery, e.g., the orthogonal matching pursuit (OMP) algorithm, can be used as initialization schemes. In this paper, we propose two extensions of the OMP algorithm that use grid-less refinement steps, which are themselves based on NM applied to marginals of the ML objective. As numerical simulations show, initializing NM using OMP with grid-less refinement steps improves the estimation performance in the high signal-to-noise power ratio (SNR) regime if compared to, e.g., initialization using standard grid-based OMP or the SAGE algorithm.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用最大似然原理和牛顿方法研究了多天线GNSS接收机的多径抑制问题。如果对所有多路径组件的参数都有良好的初始估计,NM是一个非常有效的工具,可以找到ML成本函数的全局最优,特别是NM对视线路径的延迟产生非常准确的估计。通过对参数引入有限网格,可以使用稀疏恢复领域的算法,如正交匹配追踪(OMP)算法作为初始化方案。在本文中,我们提出了使用无网格细化步骤的OMP算法的两个扩展,它们本身基于应用于ML目标边缘的NM。数值模拟表明,与使用标准基于网格的OMP或SAGE算法初始化相比,使用无网格细化步骤的OMP初始化NM可以提高在高信噪比(SNR)条件下的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipath mitigation using OMP and newton's method for multi-antenna GNSS receivers
We consider multipath mitigation for multi-antenna GNSS receivers using the maximum likelihood (ML) principle and Newton's method (NM). If good initial estimates for the parameters of all multipath components are available, NM is a very effective tool to find the global optimum of the ML cost function and, in particular, NM yields a very accurate estimate for the delay of the line-of-sight path. By introducing a finite grid for the parameters, algorithms from the field of sparse recovery, e.g., the orthogonal matching pursuit (OMP) algorithm, can be used as initialization schemes. In this paper, we propose two extensions of the OMP algorithm that use grid-less refinement steps, which are themselves based on NM applied to marginals of the ML objective. As numerical simulations show, initializing NM using OMP with grid-less refinement steps improves the estimation performance in the high signal-to-noise power ratio (SNR) regime if compared to, e.g., initialization using standard grid-based OMP or the SAGE algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信