数据融合中模糊子集定理的检验

D.M. Buede
{"title":"数据融合中模糊子集定理的检验","authors":"D.M. Buede","doi":"10.1109/MFI.1994.398422","DOIUrl":null,"url":null,"abstract":"There continues to be substantial disagreement about which of the several methods to use in measuring and updating uncertainty in data fusion applications. In this paper we examine two popular methods, fuzzy sets and probability theory. Probability theory has been the traditional method for data fusion applications. Fuzzy sets have grown in popularity in Japan and Europe, with many successful control applications. Here we give a simple overview of fuzzy sets and then describe the fuzzy subsethood theorem as the best fuzzy approach for data fusion. Finally we compare the subsethood theorem to Bayes theorem for data fusion applications.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Examination of the fuzzy subsethood theorem for data fusion\",\"authors\":\"D.M. Buede\",\"doi\":\"10.1109/MFI.1994.398422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There continues to be substantial disagreement about which of the several methods to use in measuring and updating uncertainty in data fusion applications. In this paper we examine two popular methods, fuzzy sets and probability theory. Probability theory has been the traditional method for data fusion applications. Fuzzy sets have grown in popularity in Japan and Europe, with many successful control applications. Here we give a simple overview of fuzzy sets and then describe the fuzzy subsethood theorem as the best fuzzy approach for data fusion. Finally we compare the subsethood theorem to Bayes theorem for data fusion applications.<<ETX>>\",\"PeriodicalId\":133630,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.1994.398422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在测量和更新数据融合应用中的不确定性时,应该使用哪几种方法,这方面仍然存在很大的分歧。本文研究了两种流行的方法:模糊集和概率论。概率论一直是数据融合应用的传统方法。模糊集在日本和欧洲越来越受欢迎,有许多成功的控制应用。本文简要介绍了模糊集的概念,并将模糊子集定理描述为数据融合的最佳模糊方法。最后比较了子集定理与贝叶斯定理在数据融合中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examination of the fuzzy subsethood theorem for data fusion
There continues to be substantial disagreement about which of the several methods to use in measuring and updating uncertainty in data fusion applications. In this paper we examine two popular methods, fuzzy sets and probability theory. Probability theory has been the traditional method for data fusion applications. Fuzzy sets have grown in popularity in Japan and Europe, with many successful control applications. Here we give a simple overview of fuzzy sets and then describe the fuzzy subsethood theorem as the best fuzzy approach for data fusion. Finally we compare the subsethood theorem to Bayes theorem for data fusion applications.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信