使用函数嵌入技术的全局优化概念

M. Bromberg, T. Chang, P. Luh
{"title":"使用函数嵌入技术的全局优化概念","authors":"M. Bromberg, T. Chang, P. Luh","doi":"10.23919/ACC.1989.4790296","DOIUrl":null,"url":null,"abstract":"Global optimal solutions for nonconvex problems are found by using the Function Imbedding Technique to imbed a nonconvex function into a higher dimensional convex function so that the original problem can be transformed into the problem of finding the mini-max solution of a related Lagrangian function. The Lagrangian function is chesen so that the associate dual cost function is concave, and so that the global optimal solution can be obtained from the saddle point of the Lagrangian, which can be found using ordinary numerical methods. A general theory is developed for determining when the duality gap vanishes.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Concept for Global Optimization using the Function Imbedding Technique\",\"authors\":\"M. Bromberg, T. Chang, P. Luh\",\"doi\":\"10.23919/ACC.1989.4790296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global optimal solutions for nonconvex problems are found by using the Function Imbedding Technique to imbed a nonconvex function into a higher dimensional convex function so that the original problem can be transformed into the problem of finding the mini-max solution of a related Lagrangian function. The Lagrangian function is chesen so that the associate dual cost function is concave, and so that the global optimal solution can be obtained from the saddle point of the Lagrangian, which can be found using ordinary numerical methods. A general theory is developed for determining when the duality gap vanishes.\",\"PeriodicalId\":383719,\"journal\":{\"name\":\"1989 American Control Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1989.4790296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1989.4790296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用函数嵌入技术将非凸函数嵌入到高维凸函数中,求得非凸问题的全局最优解,从而将原问题转化为求相关拉格朗日函数的极小极大解问题。将拉格朗日函数切成凹形,使得相关的对偶代价函数凹形,从而可以从拉格朗日函数的鞍点处得到全局最优解,而一般数值方法可以求出。为确定对偶性差距何时消失,发展了一个一般理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Concept for Global Optimization using the Function Imbedding Technique
Global optimal solutions for nonconvex problems are found by using the Function Imbedding Technique to imbed a nonconvex function into a higher dimensional convex function so that the original problem can be transformed into the problem of finding the mini-max solution of a related Lagrangian function. The Lagrangian function is chesen so that the associate dual cost function is concave, and so that the global optimal solution can be obtained from the saddle point of the Lagrangian, which can be found using ordinary numerical methods. A general theory is developed for determining when the duality gap vanishes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信