基于相对距离模糊学习向量量化的模糊神经网络模型

Yong-Soo Kim, Sung-ihl Kim
{"title":"基于相对距离模糊学习向量量化的模糊神经网络模型","authors":"Yong-Soo Kim, Sung-ihl Kim","doi":"10.1109/HIS.2007.46","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fuzzy LVQ (Iearning vector quantization) which is based on the fuzzification of LVQ. The proposed fuzzy LVQ uses the different learning rate depending on whether classification is correct or not. When the classification is correct, it uses the combination of a function of the distance between the input vector and the prototypes of classes and a function of the number of iteration as the fuzzy learning rate. On the other hand, when the classification is not correct, it uses the combination of the fuzzy membership value and a function of the number of iteration as the fuzzy learning rate. The proposed FLVQ (fuzzy LVQ) is integrated into the supervised IAFC (integrated adaptive fuzzy clustering) neural network 5. We used iris data set to compare the performance of the supervised IAFC neural network 5 with those of LVQ algorithm and back propagation neural network. The supervised IAFC neural network 5 yielded fewer misclassifications than LVQ algorithm and back propagation neural network.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fuzzy Neural Network Model Using a Fuzzy Learning Vector Quantization with the Relative Distance\",\"authors\":\"Yong-Soo Kim, Sung-ihl Kim\",\"doi\":\"10.1109/HIS.2007.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fuzzy LVQ (Iearning vector quantization) which is based on the fuzzification of LVQ. The proposed fuzzy LVQ uses the different learning rate depending on whether classification is correct or not. When the classification is correct, it uses the combination of a function of the distance between the input vector and the prototypes of classes and a function of the number of iteration as the fuzzy learning rate. On the other hand, when the classification is not correct, it uses the combination of the fuzzy membership value and a function of the number of iteration as the fuzzy learning rate. The proposed FLVQ (fuzzy LVQ) is integrated into the supervised IAFC (integrated adaptive fuzzy clustering) neural network 5. We used iris data set to compare the performance of the supervised IAFC neural network 5 with those of LVQ algorithm and back propagation neural network. The supervised IAFC neural network 5 yielded fewer misclassifications than LVQ algorithm and back propagation neural network.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于LVQ模糊化的模糊学习向量量化方法。所提出的模糊LVQ根据分类是否正确使用不同的学习率。当分类正确时,它使用输入向量与类原型之间距离的函数和迭代次数的函数的组合作为模糊学习率。另一方面,当分类不正确时,它使用模糊隶属度值与迭代次数函数的组合作为模糊学习率。将提出的模糊LVQ (FLVQ)集成到有监督的综合自适应模糊聚类(IAFC)神经网络中。我们使用虹膜数据集比较了监督IAFC神经网络5与LVQ算法和反向传播神经网络的性能。有监督的IAFC神经网络5比LVQ算法和反向传播神经网络产生更少的错误分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Neural Network Model Using a Fuzzy Learning Vector Quantization with the Relative Distance
In this paper, we propose a fuzzy LVQ (Iearning vector quantization) which is based on the fuzzification of LVQ. The proposed fuzzy LVQ uses the different learning rate depending on whether classification is correct or not. When the classification is correct, it uses the combination of a function of the distance between the input vector and the prototypes of classes and a function of the number of iteration as the fuzzy learning rate. On the other hand, when the classification is not correct, it uses the combination of the fuzzy membership value and a function of the number of iteration as the fuzzy learning rate. The proposed FLVQ (fuzzy LVQ) is integrated into the supervised IAFC (integrated adaptive fuzzy clustering) neural network 5. We used iris data set to compare the performance of the supervised IAFC neural network 5 with those of LVQ algorithm and back propagation neural network. The supervised IAFC neural network 5 yielded fewer misclassifications than LVQ algorithm and back propagation neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信