Bloom filter作为支持基于机器学习的Web攻击检测的工具

R. Rego, Raul Ceretta Nunes
{"title":"Bloom filter作为支持基于机器学习的Web攻击检测的工具","authors":"R. Rego, Raul Ceretta Nunes","doi":"10.5753/sbseg.2019.13964","DOIUrl":null,"url":null,"abstract":"Ataques contra aplicações da Web implicam em prejuízos sociais e financeiros. Os sistemas de detecção atuais que utilizam técnicas de aprendizagem de máquina não são escaláveis o suficiente para lidar com grandes volumes de dados. O Filtro de Bloom é uma estrutura de dados aleatória simples e eficiente que permite testar se um determinado elemento pertence a um conjunto de forma probabilística. Neste artigo aplicou-se o Filtro de Bloom combinado com sete técnicas de aprendizagem de máquina comumente utilizadas em detectores de anomalias para ataques web. Os resultados demonstram que o uso do filtro como primeiro estágio do mecanismo de detecção de anomalias reduz tanto o tempo médio quanto o tempo total de detecção em todas as técnicas. Os resultados também demonstram que o filtro pode auxiliar inclusive a incrementar a acurácia e a precisão, se adotada a otimização proposta na configuração do Filtro de Bloom para redução de falsos negativos. Palavras-chave: Filtro de Bloom, Ataques web, Sistemas de Detecção de Intrusão, Aprendizado de Máquina.","PeriodicalId":221963,"journal":{"name":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Filtro de Bloom como Ferramenta de Apoio a Detectores de Ataques Web baseados em Aprendizagem de Máquina\",\"authors\":\"R. Rego, Raul Ceretta Nunes\",\"doi\":\"10.5753/sbseg.2019.13964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ataques contra aplicações da Web implicam em prejuízos sociais e financeiros. Os sistemas de detecção atuais que utilizam técnicas de aprendizagem de máquina não são escaláveis o suficiente para lidar com grandes volumes de dados. O Filtro de Bloom é uma estrutura de dados aleatória simples e eficiente que permite testar se um determinado elemento pertence a um conjunto de forma probabilística. Neste artigo aplicou-se o Filtro de Bloom combinado com sete técnicas de aprendizagem de máquina comumente utilizadas em detectores de anomalias para ataques web. Os resultados demonstram que o uso do filtro como primeiro estágio do mecanismo de detecção de anomalias reduz tanto o tempo médio quanto o tempo total de detecção em todas as técnicas. Os resultados também demonstram que o filtro pode auxiliar inclusive a incrementar a acurácia e a precisão, se adotada a otimização proposta na configuração do Filtro de Bloom para redução de falsos negativos. Palavras-chave: Filtro de Bloom, Ataques web, Sistemas de Detecção de Intrusão, Aprendizado de Máquina.\",\"PeriodicalId\":221963,\"journal\":{\"name\":\"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbseg.2019.13964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2019.13964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

攻击Web应用社会和金融fi会带来的损失。检测系统目前使用的机器学习技术是可伸缩的苏灿fi知道处理大量数据。布鲁姆过滤器是一种数据结构简单随机和fi知道可以测试一个元素属于一个系列的概率方法。在这篇文章中,我们应用了Bloom过滤器结合七种机器学习技术,通常用于web攻击异常检测。结果表明利用filtro作为第一阶段的故障检测机制降低平均时间和总时间检测技术。结果也表明,filtro协助包括增加的准确性和精确度,采用提出的“优化反面figuração布鲁姆过滤器来减少假阴性。关键词:Bloom过滤器,网络攻击,入侵检测系统,机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtro de Bloom como Ferramenta de Apoio a Detectores de Ataques Web baseados em Aprendizagem de Máquina
Ataques contra aplicações da Web implicam em prejuízos sociais e financeiros. Os sistemas de detecção atuais que utilizam técnicas de aprendizagem de máquina não são escaláveis o suficiente para lidar com grandes volumes de dados. O Filtro de Bloom é uma estrutura de dados aleatória simples e eficiente que permite testar se um determinado elemento pertence a um conjunto de forma probabilística. Neste artigo aplicou-se o Filtro de Bloom combinado com sete técnicas de aprendizagem de máquina comumente utilizadas em detectores de anomalias para ataques web. Os resultados demonstram que o uso do filtro como primeiro estágio do mecanismo de detecção de anomalias reduz tanto o tempo médio quanto o tempo total de detecção em todas as técnicas. Os resultados também demonstram que o filtro pode auxiliar inclusive a incrementar a acurácia e a precisão, se adotada a otimização proposta na configuração do Filtro de Bloom para redução de falsos negativos. Palavras-chave: Filtro de Bloom, Ataques web, Sistemas de Detecção de Intrusão, Aprendizado de Máquina.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信