{"title":"Bloom filter作为支持基于机器学习的Web攻击检测的工具","authors":"R. Rego, Raul Ceretta Nunes","doi":"10.5753/sbseg.2019.13964","DOIUrl":null,"url":null,"abstract":"Ataques contra aplicações da Web implicam em prejuízos sociais e financeiros. Os sistemas de detecção atuais que utilizam técnicas de aprendizagem de máquina não são escaláveis o suficiente para lidar com grandes volumes de dados. O Filtro de Bloom é uma estrutura de dados aleatória simples e eficiente que permite testar se um determinado elemento pertence a um conjunto de forma probabilística. Neste artigo aplicou-se o Filtro de Bloom combinado com sete técnicas de aprendizagem de máquina comumente utilizadas em detectores de anomalias para ataques web. Os resultados demonstram que o uso do filtro como primeiro estágio do mecanismo de detecção de anomalias reduz tanto o tempo médio quanto o tempo total de detecção em todas as técnicas. Os resultados também demonstram que o filtro pode auxiliar inclusive a incrementar a acurácia e a precisão, se adotada a otimização proposta na configuração do Filtro de Bloom para redução de falsos negativos. Palavras-chave: Filtro de Bloom, Ataques web, Sistemas de Detecção de Intrusão, Aprendizado de Máquina.","PeriodicalId":221963,"journal":{"name":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Filtro de Bloom como Ferramenta de Apoio a Detectores de Ataques Web baseados em Aprendizagem de Máquina\",\"authors\":\"R. Rego, Raul Ceretta Nunes\",\"doi\":\"10.5753/sbseg.2019.13964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ataques contra aplicações da Web implicam em prejuízos sociais e financeiros. Os sistemas de detecção atuais que utilizam técnicas de aprendizagem de máquina não são escaláveis o suficiente para lidar com grandes volumes de dados. O Filtro de Bloom é uma estrutura de dados aleatória simples e eficiente que permite testar se um determinado elemento pertence a um conjunto de forma probabilística. Neste artigo aplicou-se o Filtro de Bloom combinado com sete técnicas de aprendizagem de máquina comumente utilizadas em detectores de anomalias para ataques web. Os resultados demonstram que o uso do filtro como primeiro estágio do mecanismo de detecção de anomalias reduz tanto o tempo médio quanto o tempo total de detecção em todas as técnicas. Os resultados também demonstram que o filtro pode auxiliar inclusive a incrementar a acurácia e a precisão, se adotada a otimização proposta na configuração do Filtro de Bloom para redução de falsos negativos. Palavras-chave: Filtro de Bloom, Ataques web, Sistemas de Detecção de Intrusão, Aprendizado de Máquina.\",\"PeriodicalId\":221963,\"journal\":{\"name\":\"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbseg.2019.13964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2019.13964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Filtro de Bloom como Ferramenta de Apoio a Detectores de Ataques Web baseados em Aprendizagem de Máquina
Ataques contra aplicações da Web implicam em prejuízos sociais e financeiros. Os sistemas de detecção atuais que utilizam técnicas de aprendizagem de máquina não são escaláveis o suficiente para lidar com grandes volumes de dados. O Filtro de Bloom é uma estrutura de dados aleatória simples e eficiente que permite testar se um determinado elemento pertence a um conjunto de forma probabilística. Neste artigo aplicou-se o Filtro de Bloom combinado com sete técnicas de aprendizagem de máquina comumente utilizadas em detectores de anomalias para ataques web. Os resultados demonstram que o uso do filtro como primeiro estágio do mecanismo de detecção de anomalias reduz tanto o tempo médio quanto o tempo total de detecção em todas as técnicas. Os resultados também demonstram que o filtro pode auxiliar inclusive a incrementar a acurácia e a precisão, se adotada a otimização proposta na configuração do Filtro de Bloom para redução de falsos negativos. Palavras-chave: Filtro de Bloom, Ataques web, Sistemas de Detecção de Intrusão, Aprendizado de Máquina.