J. Hughes, C. Occhiuzzi, J. Batchelor, G. Marrocco
{"title":"用于医疗保健5g - rfid物联网应用的折叠梳线阵列","authors":"J. Hughes, C. Occhiuzzi, J. Batchelor, G. Marrocco","doi":"10.1109/RFID52461.2021.9477309","DOIUrl":null,"url":null,"abstract":"The paper proposes a wearable miniaturized antenna array suitable to be adopted in 3.6 GHz body-centric backscattering communications. The array is a modified version of the comb-line antenna, whose horizontal segments are bent such to place the radiating dipoles near and increase the radiation efficiency of the structure by exploiting the vertical component of the transmission line currents. The antenna footprint is hence sensibly improved. Parametric analysis are performed and an optimal configuration is derived capable to provide a theoretical read distance of more than 4m.","PeriodicalId":358808,"journal":{"name":"2021 IEEE International Conference on RFID (RFID)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Folded Comb-line Array for Healthcare 5G-RFID-based IoT applications\",\"authors\":\"J. Hughes, C. Occhiuzzi, J. Batchelor, G. Marrocco\",\"doi\":\"10.1109/RFID52461.2021.9477309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a wearable miniaturized antenna array suitable to be adopted in 3.6 GHz body-centric backscattering communications. The array is a modified version of the comb-line antenna, whose horizontal segments are bent such to place the radiating dipoles near and increase the radiation efficiency of the structure by exploiting the vertical component of the transmission line currents. The antenna footprint is hence sensibly improved. Parametric analysis are performed and an optimal configuration is derived capable to provide a theoretical read distance of more than 4m.\",\"PeriodicalId\":358808,\"journal\":{\"name\":\"2021 IEEE International Conference on RFID (RFID)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on RFID (RFID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID52461.2021.9477309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on RFID (RFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID52461.2021.9477309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Folded Comb-line Array for Healthcare 5G-RFID-based IoT applications
The paper proposes a wearable miniaturized antenna array suitable to be adopted in 3.6 GHz body-centric backscattering communications. The array is a modified version of the comb-line antenna, whose horizontal segments are bent such to place the radiating dipoles near and increase the radiation efficiency of the structure by exploiting the vertical component of the transmission line currents. The antenna footprint is hence sensibly improved. Parametric analysis are performed and an optimal configuration is derived capable to provide a theoretical read distance of more than 4m.