纹理分类中局部已完成三元计数的邻域评价

Ch. Sudha Sree, M.V.P. Chandra Sekhara Rao
{"title":"纹理分类中局部已完成三元计数的邻域评价","authors":"Ch. Sudha Sree, M.V.P. Chandra Sekhara Rao","doi":"10.1109/IACC.2017.0144","DOIUrl":null,"url":null,"abstract":"Local Binary Pattern (LBP) is one of the successful texture analysis methods. However, LBP suffers from noise robustness and rotation invariance. This paper proposes a novel noise insensitive texture descriptor, Adjacent Evaluation Local Ternary Count (AELTC) for rotation invariant texture classification. Unlike LBP, AELTC uses an adjacent evaluation window to change the threshold scheme. It is enhanced to Adjacent Evaluation Completed Local Ternary Count (AECLTC) with three operators to improve the performance of texture classification. During the performance evaluation, various experiments are conducted on Outex and CUReT databases using seven existing LBP variants and with proposed AECLTC. The results demonstrated the superiority of AECLTC when compared to other LBP variants.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adjacent Evaluation of Completed Local Ternary Count for Texture Classification\",\"authors\":\"Ch. Sudha Sree, M.V.P. Chandra Sekhara Rao\",\"doi\":\"10.1109/IACC.2017.0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local Binary Pattern (LBP) is one of the successful texture analysis methods. However, LBP suffers from noise robustness and rotation invariance. This paper proposes a novel noise insensitive texture descriptor, Adjacent Evaluation Local Ternary Count (AELTC) for rotation invariant texture classification. Unlike LBP, AELTC uses an adjacent evaluation window to change the threshold scheme. It is enhanced to Adjacent Evaluation Completed Local Ternary Count (AECLTC) with three operators to improve the performance of texture classification. During the performance evaluation, various experiments are conducted on Outex and CUReT databases using seven existing LBP variants and with proposed AECLTC. The results demonstrated the superiority of AECLTC when compared to other LBP variants.\",\"PeriodicalId\":248433,\"journal\":{\"name\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACC.2017.0144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

局部二值模式(LBP)是一种成功的纹理分析方法。然而,LBP具有噪声鲁棒性和旋转不变性。提出了一种新的对噪声不敏感的纹理描述子——邻值局部三元计数(AELTC),用于旋转不变纹理分类。与LBP不同,AELTC使用相邻的评估窗口来改变阈值方案。为了提高纹理分类的性能,将其改进为使用三个算子的邻域评估完成局部三元计数(AECLTC)。在性能评估过程中,使用七个现有的LBP变体和提出的AECLTC在Outex和CUReT数据库上进行了各种实验。结果表明,与其他LBP变体相比,AECLTC具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjacent Evaluation of Completed Local Ternary Count for Texture Classification
Local Binary Pattern (LBP) is one of the successful texture analysis methods. However, LBP suffers from noise robustness and rotation invariance. This paper proposes a novel noise insensitive texture descriptor, Adjacent Evaluation Local Ternary Count (AELTC) for rotation invariant texture classification. Unlike LBP, AELTC uses an adjacent evaluation window to change the threshold scheme. It is enhanced to Adjacent Evaluation Completed Local Ternary Count (AECLTC) with three operators to improve the performance of texture classification. During the performance evaluation, various experiments are conducted on Outex and CUReT databases using seven existing LBP variants and with proposed AECLTC. The results demonstrated the superiority of AECLTC when compared to other LBP variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信