{"title":"一种基于信道假设检验的无线网络用户认证方法","authors":"Jitendra Tugnait, Hyosung Kim","doi":"10.1109/COMSNETS.2010.5432018","DOIUrl":null,"url":null,"abstract":"We consider a physical layer approach to enhance wireless security by using the unique wireless channel state information (CSI) of a legitimate user to authenticate subsequent transmissions from this user, thereby denying access to any spoofer whose CSI would significantly differ from that of the legitimate user by virtue of a different spatial location. In some existing approaches, multicarrier systems have been considered where the channel frequency response at distinct frequencies is used to devise a hypothesis testing approach: is the CSI of the current transmission (packet) the same as that of the previous transmission? In this paper we investigate a single-carrier timedomain approach via either residual testing or time-domain CSI comparison. A hypothesis testing approach is formulated to test whiteness of residuals from current transmission where the residuals are generated using the estimated channel from the previous transmission. We also consider a hypothesis testing approach where the time-domain CSI of the current transmission is compared with that of the previous transmission. Two binary hypothesis testing approaches are formulated and illustrated via simulations.","PeriodicalId":369006,"journal":{"name":"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"A channel-based hypothesis testing approach to enhance user authentication in wireless networks\",\"authors\":\"Jitendra Tugnait, Hyosung Kim\",\"doi\":\"10.1109/COMSNETS.2010.5432018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a physical layer approach to enhance wireless security by using the unique wireless channel state information (CSI) of a legitimate user to authenticate subsequent transmissions from this user, thereby denying access to any spoofer whose CSI would significantly differ from that of the legitimate user by virtue of a different spatial location. In some existing approaches, multicarrier systems have been considered where the channel frequency response at distinct frequencies is used to devise a hypothesis testing approach: is the CSI of the current transmission (packet) the same as that of the previous transmission? In this paper we investigate a single-carrier timedomain approach via either residual testing or time-domain CSI comparison. A hypothesis testing approach is formulated to test whiteness of residuals from current transmission where the residuals are generated using the estimated channel from the previous transmission. We also consider a hypothesis testing approach where the time-domain CSI of the current transmission is compared with that of the previous transmission. Two binary hypothesis testing approaches are formulated and illustrated via simulations.\",\"PeriodicalId\":369006,\"journal\":{\"name\":\"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS.2010.5432018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2010.5432018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A channel-based hypothesis testing approach to enhance user authentication in wireless networks
We consider a physical layer approach to enhance wireless security by using the unique wireless channel state information (CSI) of a legitimate user to authenticate subsequent transmissions from this user, thereby denying access to any spoofer whose CSI would significantly differ from that of the legitimate user by virtue of a different spatial location. In some existing approaches, multicarrier systems have been considered where the channel frequency response at distinct frequencies is used to devise a hypothesis testing approach: is the CSI of the current transmission (packet) the same as that of the previous transmission? In this paper we investigate a single-carrier timedomain approach via either residual testing or time-domain CSI comparison. A hypothesis testing approach is formulated to test whiteness of residuals from current transmission where the residuals are generated using the estimated channel from the previous transmission. We also consider a hypothesis testing approach where the time-domain CSI of the current transmission is compared with that of the previous transmission. Two binary hypothesis testing approaches are formulated and illustrated via simulations.