烟草植物病害数据集

Hong Lin, Rita Tse, Su-Kit Tang, Z. Qiang, Jinliang Ou, Giovanni Pau
{"title":"烟草植物病害数据集","authors":"Hong Lin, Rita Tse, Su-Kit Tang, Z. Qiang, Jinliang Ou, Giovanni Pau","doi":"10.1117/12.2644288","DOIUrl":null,"url":null,"abstract":"Tobacco is a valuable plant in agricultural and commercial industry. Any disease infection to the plant may lower the harvest and interfere the operation of supply chain in the market. Image-based deep learning methods are cutting-edge technologies that can facilitate the diagnosis of diseases efficiently and effectively when large-scale dataset is available for training. However, there is not a public dataset about tobacco currently. A comprehensive dataset is appealed to take advantage of deep learning methods in tobacco cultivation urgently. In this paper, we propose to create a specific dataset for tobacco diseases, called Tobacco Plant Disease Dataset (TPDD). 2721 tobacco leaf images are taken in field. The dataset serves for two purposes: disease classification and leaf detection. For classification, we identify 12 classes and provide two types of disease annotations: 1) Whole Leaf Section; 2) Disease Fragment Section. For leaf detection, we provide two kinds of bounding box: rectangle bounding box and polygon bounding box. In addition, we conduct baseline experiments to illustrate the usefulness of TPDD: 1) using deep learning model to detect single disease and multiple diseases; 2) using YOLO-v3 and Mask-RCNN to detect leaves. We hope that the dataset could support the tobacco industry, also be a benchmark in fine-grained vision classification.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tobacco plant disease dataset\",\"authors\":\"Hong Lin, Rita Tse, Su-Kit Tang, Z. Qiang, Jinliang Ou, Giovanni Pau\",\"doi\":\"10.1117/12.2644288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tobacco is a valuable plant in agricultural and commercial industry. Any disease infection to the plant may lower the harvest and interfere the operation of supply chain in the market. Image-based deep learning methods are cutting-edge technologies that can facilitate the diagnosis of diseases efficiently and effectively when large-scale dataset is available for training. However, there is not a public dataset about tobacco currently. A comprehensive dataset is appealed to take advantage of deep learning methods in tobacco cultivation urgently. In this paper, we propose to create a specific dataset for tobacco diseases, called Tobacco Plant Disease Dataset (TPDD). 2721 tobacco leaf images are taken in field. The dataset serves for two purposes: disease classification and leaf detection. For classification, we identify 12 classes and provide two types of disease annotations: 1) Whole Leaf Section; 2) Disease Fragment Section. For leaf detection, we provide two kinds of bounding box: rectangle bounding box and polygon bounding box. In addition, we conduct baseline experiments to illustrate the usefulness of TPDD: 1) using deep learning model to detect single disease and multiple diseases; 2) using YOLO-v3 and Mask-RCNN to detect leaves. We hope that the dataset could support the tobacco industry, also be a benchmark in fine-grained vision classification.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

烟草是一种农业和商业上有价值的植物。任何病害对植物的感染都可能降低收成,干扰市场供应链的运作。基于图像的深度学习方法是一种前沿技术,当有大规模数据集可供训练时,可以高效地促进疾病诊断。然而,目前还没有一个关于烟草的公共数据集。迫切需要一个全面的数据集来利用深度学习方法在烟草种植中。在本文中,我们建议创建一个特定的烟草疾病数据集,称为烟草植物疾病数据集(TPDD)。现场采集烟叶图像2721张。该数据集用于两个目的:疾病分类和叶片检测。在分类方面,我们确定了12个类别,并提供了两种疾病注释:1)全叶切片;2)疾病片段切片。对于叶子检测,我们提供了两种边界框:矩形边界框和多边形边界框。此外,我们还进行了基线实验来说明TPDD的有用性:1)使用深度学习模型检测单一疾病和多种疾病;2)利用YOLO-v3和Mask-RCNN对叶片进行检测。我们希望该数据集可以为烟草行业提供支持,也可以作为细粒度视觉分类的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tobacco plant disease dataset
Tobacco is a valuable plant in agricultural and commercial industry. Any disease infection to the plant may lower the harvest and interfere the operation of supply chain in the market. Image-based deep learning methods are cutting-edge technologies that can facilitate the diagnosis of diseases efficiently and effectively when large-scale dataset is available for training. However, there is not a public dataset about tobacco currently. A comprehensive dataset is appealed to take advantage of deep learning methods in tobacco cultivation urgently. In this paper, we propose to create a specific dataset for tobacco diseases, called Tobacco Plant Disease Dataset (TPDD). 2721 tobacco leaf images are taken in field. The dataset serves for two purposes: disease classification and leaf detection. For classification, we identify 12 classes and provide two types of disease annotations: 1) Whole Leaf Section; 2) Disease Fragment Section. For leaf detection, we provide two kinds of bounding box: rectangle bounding box and polygon bounding box. In addition, we conduct baseline experiments to illustrate the usefulness of TPDD: 1) using deep learning model to detect single disease and multiple diseases; 2) using YOLO-v3 and Mask-RCNN to detect leaves. We hope that the dataset could support the tobacco industry, also be a benchmark in fine-grained vision classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信