Hong Lin, Rita Tse, Su-Kit Tang, Z. Qiang, Jinliang Ou, Giovanni Pau
{"title":"烟草植物病害数据集","authors":"Hong Lin, Rita Tse, Su-Kit Tang, Z. Qiang, Jinliang Ou, Giovanni Pau","doi":"10.1117/12.2644288","DOIUrl":null,"url":null,"abstract":"Tobacco is a valuable plant in agricultural and commercial industry. Any disease infection to the plant may lower the harvest and interfere the operation of supply chain in the market. Image-based deep learning methods are cutting-edge technologies that can facilitate the diagnosis of diseases efficiently and effectively when large-scale dataset is available for training. However, there is not a public dataset about tobacco currently. A comprehensive dataset is appealed to take advantage of deep learning methods in tobacco cultivation urgently. In this paper, we propose to create a specific dataset for tobacco diseases, called Tobacco Plant Disease Dataset (TPDD). 2721 tobacco leaf images are taken in field. The dataset serves for two purposes: disease classification and leaf detection. For classification, we identify 12 classes and provide two types of disease annotations: 1) Whole Leaf Section; 2) Disease Fragment Section. For leaf detection, we provide two kinds of bounding box: rectangle bounding box and polygon bounding box. In addition, we conduct baseline experiments to illustrate the usefulness of TPDD: 1) using deep learning model to detect single disease and multiple diseases; 2) using YOLO-v3 and Mask-RCNN to detect leaves. We hope that the dataset could support the tobacco industry, also be a benchmark in fine-grained vision classification.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tobacco plant disease dataset\",\"authors\":\"Hong Lin, Rita Tse, Su-Kit Tang, Z. Qiang, Jinliang Ou, Giovanni Pau\",\"doi\":\"10.1117/12.2644288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tobacco is a valuable plant in agricultural and commercial industry. Any disease infection to the plant may lower the harvest and interfere the operation of supply chain in the market. Image-based deep learning methods are cutting-edge technologies that can facilitate the diagnosis of diseases efficiently and effectively when large-scale dataset is available for training. However, there is not a public dataset about tobacco currently. A comprehensive dataset is appealed to take advantage of deep learning methods in tobacco cultivation urgently. In this paper, we propose to create a specific dataset for tobacco diseases, called Tobacco Plant Disease Dataset (TPDD). 2721 tobacco leaf images are taken in field. The dataset serves for two purposes: disease classification and leaf detection. For classification, we identify 12 classes and provide two types of disease annotations: 1) Whole Leaf Section; 2) Disease Fragment Section. For leaf detection, we provide two kinds of bounding box: rectangle bounding box and polygon bounding box. In addition, we conduct baseline experiments to illustrate the usefulness of TPDD: 1) using deep learning model to detect single disease and multiple diseases; 2) using YOLO-v3 and Mask-RCNN to detect leaves. We hope that the dataset could support the tobacco industry, also be a benchmark in fine-grained vision classification.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tobacco is a valuable plant in agricultural and commercial industry. Any disease infection to the plant may lower the harvest and interfere the operation of supply chain in the market. Image-based deep learning methods are cutting-edge technologies that can facilitate the diagnosis of diseases efficiently and effectively when large-scale dataset is available for training. However, there is not a public dataset about tobacco currently. A comprehensive dataset is appealed to take advantage of deep learning methods in tobacco cultivation urgently. In this paper, we propose to create a specific dataset for tobacco diseases, called Tobacco Plant Disease Dataset (TPDD). 2721 tobacco leaf images are taken in field. The dataset serves for two purposes: disease classification and leaf detection. For classification, we identify 12 classes and provide two types of disease annotations: 1) Whole Leaf Section; 2) Disease Fragment Section. For leaf detection, we provide two kinds of bounding box: rectangle bounding box and polygon bounding box. In addition, we conduct baseline experiments to illustrate the usefulness of TPDD: 1) using deep learning model to detect single disease and multiple diseases; 2) using YOLO-v3 and Mask-RCNN to detect leaves. We hope that the dataset could support the tobacco industry, also be a benchmark in fine-grained vision classification.