犹豫与冲突建模:多类问题的基于信念的方法

Thomas Burger, O. Aran, A. Caplier
{"title":"犹豫与冲突建模:多类问题的基于信念的方法","authors":"Thomas Burger, O. Aran, A. Caplier","doi":"10.1109/ICMLA.2006.35","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is a powerful tool for binary classification. Numerous methods are known to fuse several binary SVMs into multi-class (MC) classifiers. These methods are efficient, but an accurate study of the misclassified items leads to notice two sources of mistakes: (1) the response of each classifier does not use the entire information from the SVM, and (2) the decision method does not use the entire information from the classifier responses. In this paper, we present a method which partially prevents these two losses of information by applying belief theories (BTs) to SVM fusion, while keeping the efficient aspect of the classical methods","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Modeling Hesitation and Conflict: A Belief-Based Approach for Multi-class Problems\",\"authors\":\"Thomas Burger, O. Aran, A. Caplier\",\"doi\":\"10.1109/ICMLA.2006.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine (SVM) is a powerful tool for binary classification. Numerous methods are known to fuse several binary SVMs into multi-class (MC) classifiers. These methods are efficient, but an accurate study of the misclassified items leads to notice two sources of mistakes: (1) the response of each classifier does not use the entire information from the SVM, and (2) the decision method does not use the entire information from the classifier responses. In this paper, we present a method which partially prevents these two losses of information by applying belief theories (BTs) to SVM fusion, while keeping the efficient aspect of the classical methods\",\"PeriodicalId\":297071,\"journal\":{\"name\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2006.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

支持向量机(SVM)是一种强大的二值分类工具。已知有许多方法将多个二值支持向量机融合成多类(MC)分类器。这些方法是有效的,但是对错误分类项目的准确研究导致注意到两个错误来源:(1)每个分类器的响应没有使用来自支持向量机的全部信息,(2)决策方法没有使用来自分类器响应的全部信息。本文提出了一种将信念理论应用于支持向量机融合的方法,在保留经典方法的有效性的同时,部分地避免了这两种信息的丢失
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Hesitation and Conflict: A Belief-Based Approach for Multi-class Problems
Support vector machine (SVM) is a powerful tool for binary classification. Numerous methods are known to fuse several binary SVMs into multi-class (MC) classifiers. These methods are efficient, but an accurate study of the misclassified items leads to notice two sources of mistakes: (1) the response of each classifier does not use the entire information from the SVM, and (2) the decision method does not use the entire information from the classifier responses. In this paper, we present a method which partially prevents these two losses of information by applying belief theories (BTs) to SVM fusion, while keeping the efficient aspect of the classical methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信