有效的图像重新排序利用点击数据

Shusheng Cen, Lezi Wang, Yanchao Feng, Hongliang Bai, Yuan Dong
{"title":"有效的图像重新排序利用点击数据","authors":"Shusheng Cen, Lezi Wang, Yanchao Feng, Hongliang Bai, Yuan Dong","doi":"10.1109/ICMEW.2014.6890605","DOIUrl":null,"url":null,"abstract":"This paper introduces our system competing in MSR-Bing Image Retrieval Challenge at ICME 2014. The task of the challenge is to rank images by their relevance to a given topic, by leveraging cues hidden in search engine's click log. With the successful trial in last year's challenge, search-based method is shown to be effective in this task. We reserve the basic idea of search-based method in our new system, and there are also some improvements made this time. The first one is an adjustment in textual search algorithm for related clicked images in database. We simplified the previous scheme and make it more straight-forward and effient. The second inovation is using support vector machines to predict the relevance of query-image pair.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient image reranking by leveraging click data\",\"authors\":\"Shusheng Cen, Lezi Wang, Yanchao Feng, Hongliang Bai, Yuan Dong\",\"doi\":\"10.1109/ICMEW.2014.6890605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces our system competing in MSR-Bing Image Retrieval Challenge at ICME 2014. The task of the challenge is to rank images by their relevance to a given topic, by leveraging cues hidden in search engine's click log. With the successful trial in last year's challenge, search-based method is shown to be effective in this task. We reserve the basic idea of search-based method in our new system, and there are also some improvements made this time. The first one is an adjustment in textual search algorithm for related clicked images in database. We simplified the previous scheme and make it more straight-forward and effient. The second inovation is using support vector machines to predict the relevance of query-image pair.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了我们的系统在ICME 2014上参加MSR-Bing图像检索挑战赛。挑战的任务是通过利用隐藏在搜索引擎点击记录中的线索,根据与给定主题的相关性对图像进行排名。通过去年挑战赛的成功试验,证明了基于搜索的方法在该任务中的有效性。我们在新系统中保留了基于搜索方法的基本思想,并做了一些改进。首先是对数据库中相关点击图片的文本搜索算法进行调整。我们简化了以前的方案,使之更加直接和高效。第二个创新是使用支持向量机来预测查询-图像对的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient image reranking by leveraging click data
This paper introduces our system competing in MSR-Bing Image Retrieval Challenge at ICME 2014. The task of the challenge is to rank images by their relevance to a given topic, by leveraging cues hidden in search engine's click log. With the successful trial in last year's challenge, search-based method is shown to be effective in this task. We reserve the basic idea of search-based method in our new system, and there are also some improvements made this time. The first one is an adjustment in textual search algorithm for related clicked images in database. We simplified the previous scheme and make it more straight-forward and effient. The second inovation is using support vector machines to predict the relevance of query-image pair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信