{"title":"基于剪影阈值的日志文本聚类分析","authors":"J. J","doi":"10.20894/IJDMTA.102.006.001.004","DOIUrl":null,"url":null,"abstract":"- Automated log analysis has been a dominant subject area of interest to both industry and academics alike. The heterogeneous nature of system logs, the disparate sources of logs (Infrastructure, Networks, Databases and Applications) and their underlying structure & formats makes the challenge harder. In this paper I present the less frequently used document clustering techniques to dynamically organize real time log events (e.g. Errors, warnings) to specific categories that are pre-built from a corpus of log archives. This kind of syntactic log categorization can be exploited for automatic log monitoring, priority flagging and dynamic solution recommendation systems. I propose practical strategies to cluster and correlate high volume log archives and high velocity real time log events; both in terms of solution quality and computational efficiency. First I compare two traditional partitional document clustering approaches to categorize high dimensional log corpus. In order to select a suitable model for our problem, Entropy, Purity and Silhouette Index are used to evaluate these different learning approaches. Then I propose computationally efficient approaches to generate vector space model for the real time log events. Then to dynamically relate them to the categories from the corpus, I suggest the use of a combination of critical distance measure and least distance approach. In addition, I introduce and evaluate three different critical distance measures to ascertain if the real time event belongs to a totally new category that is unobserved in the corpus.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Silhouette Threshold Based Text Clustering for Log Analysis\",\"authors\":\"J. J\",\"doi\":\"10.20894/IJDMTA.102.006.001.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Automated log analysis has been a dominant subject area of interest to both industry and academics alike. The heterogeneous nature of system logs, the disparate sources of logs (Infrastructure, Networks, Databases and Applications) and their underlying structure & formats makes the challenge harder. In this paper I present the less frequently used document clustering techniques to dynamically organize real time log events (e.g. Errors, warnings) to specific categories that are pre-built from a corpus of log archives. This kind of syntactic log categorization can be exploited for automatic log monitoring, priority flagging and dynamic solution recommendation systems. I propose practical strategies to cluster and correlate high volume log archives and high velocity real time log events; both in terms of solution quality and computational efficiency. First I compare two traditional partitional document clustering approaches to categorize high dimensional log corpus. In order to select a suitable model for our problem, Entropy, Purity and Silhouette Index are used to evaluate these different learning approaches. Then I propose computationally efficient approaches to generate vector space model for the real time log events. Then to dynamically relate them to the categories from the corpus, I suggest the use of a combination of critical distance measure and least distance approach. In addition, I introduce and evaluate three different critical distance measures to ascertain if the real time event belongs to a totally new category that is unobserved in the corpus.\",\"PeriodicalId\":414709,\"journal\":{\"name\":\"International Journal of Data Mining Techniques and Applications\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20894/IJDMTA.102.006.001.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/IJDMTA.102.006.001.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silhouette Threshold Based Text Clustering for Log Analysis
- Automated log analysis has been a dominant subject area of interest to both industry and academics alike. The heterogeneous nature of system logs, the disparate sources of logs (Infrastructure, Networks, Databases and Applications) and their underlying structure & formats makes the challenge harder. In this paper I present the less frequently used document clustering techniques to dynamically organize real time log events (e.g. Errors, warnings) to specific categories that are pre-built from a corpus of log archives. This kind of syntactic log categorization can be exploited for automatic log monitoring, priority flagging and dynamic solution recommendation systems. I propose practical strategies to cluster and correlate high volume log archives and high velocity real time log events; both in terms of solution quality and computational efficiency. First I compare two traditional partitional document clustering approaches to categorize high dimensional log corpus. In order to select a suitable model for our problem, Entropy, Purity and Silhouette Index are used to evaluate these different learning approaches. Then I propose computationally efficient approaches to generate vector space model for the real time log events. Then to dynamically relate them to the categories from the corpus, I suggest the use of a combination of critical distance measure and least distance approach. In addition, I introduce and evaluate three different critical distance measures to ascertain if the real time event belongs to a totally new category that is unobserved in the corpus.