{"title":"白头分解","authors":"Xiaoyi Cui, B. Kalmár, P. Orson, Nathan Sunukjian","doi":"10.1093/oso/9780198841319.003.0007","DOIUrl":null,"url":null,"abstract":"‘The Whitehead Decomposition’ introduces this historically significant decomposition. Not only is the quotient of the 3-sphere by the Whitehead decomposition not homeomorphic to the 3-sphere, it is not even a manifold. In order to detect this curious fact, the notion of a noncompact space being simply connected at infinity is introduced. The chapter also describes the Whitehead manifold, which is a contractible 3-manifold not homeomorphic to Euclidean space. While the Whitehead decomposition does not shrink, its product with the real line does, as is proved in this chapter; in other words, the quotient of the 3-sphere by the Whitehead decomposition is a manifold factor. The proof of the disc embedding theorem utilizes Bing–Whitehead decompositions, which may be understood to be a mix between the Whitehead decomposition and the Bing decomposition from a previous chapter. In a subsequent chapter, precisely when Bing–Whitehead decompositions shrink is explained.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Whitehead Decomposition\",\"authors\":\"Xiaoyi Cui, B. Kalmár, P. Orson, Nathan Sunukjian\",\"doi\":\"10.1093/oso/9780198841319.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘The Whitehead Decomposition’ introduces this historically significant decomposition. Not only is the quotient of the 3-sphere by the Whitehead decomposition not homeomorphic to the 3-sphere, it is not even a manifold. In order to detect this curious fact, the notion of a noncompact space being simply connected at infinity is introduced. The chapter also describes the Whitehead manifold, which is a contractible 3-manifold not homeomorphic to Euclidean space. While the Whitehead decomposition does not shrink, its product with the real line does, as is proved in this chapter; in other words, the quotient of the 3-sphere by the Whitehead decomposition is a manifold factor. The proof of the disc embedding theorem utilizes Bing–Whitehead decompositions, which may be understood to be a mix between the Whitehead decomposition and the Bing decomposition from a previous chapter. In a subsequent chapter, precisely when Bing–Whitehead decompositions shrink is explained.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
‘The Whitehead Decomposition’ introduces this historically significant decomposition. Not only is the quotient of the 3-sphere by the Whitehead decomposition not homeomorphic to the 3-sphere, it is not even a manifold. In order to detect this curious fact, the notion of a noncompact space being simply connected at infinity is introduced. The chapter also describes the Whitehead manifold, which is a contractible 3-manifold not homeomorphic to Euclidean space. While the Whitehead decomposition does not shrink, its product with the real line does, as is proved in this chapter; in other words, the quotient of the 3-sphere by the Whitehead decomposition is a manifold factor. The proof of the disc embedding theorem utilizes Bing–Whitehead decompositions, which may be understood to be a mix between the Whitehead decomposition and the Bing decomposition from a previous chapter. In a subsequent chapter, precisely when Bing–Whitehead decompositions shrink is explained.