摘要:在具有挑战性的临床心电图数据中自动检测心室去极化的开始

Christopher I. Baek, Kanav Saraf, M. Wasko, Xu Zhang, Yi-yong Zheng, P. Borgström, A. Mahajan, W. Kaiser
{"title":"摘要:在具有挑战性的临床心电图数据中自动检测心室去极化的开始","authors":"Christopher I. Baek, Kanav Saraf, M. Wasko, Xu Zhang, Yi-yong Zheng, P. Borgström, A. Mahajan, W. Kaiser","doi":"10.1109/CHASE48038.2019.00010","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for automatically detecting the onset of ventricular depolarization in electrocardiogram (ECG). In order to accommodate highly variable ECG morphologies in potentially noisy ECG signals, a weighted combination of factors that are consistent with the onset of ventricular depolarization is computed. Weight parameters are optimized to maximize the detection accuracy. The proposed method is evaluated against diverse datasets, yielding a bias of 1.69 ms, standard deviation of 10.55 ms, and mean absolute error of 6.68 ms.","PeriodicalId":137790,"journal":{"name":"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster Abstract: Automated Detection of the Onset of Ventricular Depolarization in Challenging Clinical ECG Data\",\"authors\":\"Christopher I. Baek, Kanav Saraf, M. Wasko, Xu Zhang, Yi-yong Zheng, P. Borgström, A. Mahajan, W. Kaiser\",\"doi\":\"10.1109/CHASE48038.2019.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for automatically detecting the onset of ventricular depolarization in electrocardiogram (ECG). In order to accommodate highly variable ECG morphologies in potentially noisy ECG signals, a weighted combination of factors that are consistent with the onset of ventricular depolarization is computed. Weight parameters are optimized to maximize the detection accuracy. The proposed method is evaluated against diverse datasets, yielding a bias of 1.69 ms, standard deviation of 10.55 ms, and mean absolute error of 6.68 ms.\",\"PeriodicalId\":137790,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHASE48038.2019.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHASE48038.2019.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种自动检测心电图心室去极化起始的新方法。为了适应在潜在噪声的ECG信号中高度可变的ECG形态,计算了与心室去极化发作一致的因素的加权组合。重量参数优化,以最大限度地提高检测精度。该方法针对不同的数据集进行了评估,偏差为1.69 ms,标准偏差为10.55 ms,平均绝对误差为6.68 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster Abstract: Automated Detection of the Onset of Ventricular Depolarization in Challenging Clinical ECG Data
This paper presents a novel method for automatically detecting the onset of ventricular depolarization in electrocardiogram (ECG). In order to accommodate highly variable ECG morphologies in potentially noisy ECG signals, a weighted combination of factors that are consistent with the onset of ventricular depolarization is computed. Weight parameters are optimized to maximize the detection accuracy. The proposed method is evaluated against diverse datasets, yielding a bias of 1.69 ms, standard deviation of 10.55 ms, and mean absolute error of 6.68 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信