谷歌地球图像的土地利用/土地覆盖分类

D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal
{"title":"谷歌地球图像的土地利用/土地覆盖分类","authors":"D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal","doi":"10.1109/WIECON-ECE.2017.8468898","DOIUrl":null,"url":null,"abstract":"Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Land Use/ Land Cover Classification of Google Earth Imagery\",\"authors\":\"D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal\",\"doi\":\"10.1109/WIECON-ECE.2017.8468898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

谷歌地球是高空间分辨率图像的来源。利用免费获取的Google Earth (GE)图像,生成典型城市高度异质景观的土地利用/土地覆盖专题地图。在本文中,我们提出了基于欧氏距离和平均像素强度的K-NN分类对五种不同的地物进行分类。将该方法的分类精度与一般的K-NN进行了比较。通用K-NN的总体分类准确率为75.04%,kappa值为0.74。而本文提出的方法的结果分别为76.38%和0.78。由于谷歌地球图像的光谱反射率较差,这两种方法都存在分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Land Use/ Land Cover Classification of Google Earth Imagery
Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信