使用稀疏逼近和自适应窗口选择的图像绘制

S. K. Sahoo, Wenmiao Lu
{"title":"使用稀疏逼近和自适应窗口选择的图像绘制","authors":"S. K. Sahoo, Wenmiao Lu","doi":"10.1109/WISP.2011.6051703","DOIUrl":null,"url":null,"abstract":"In this paper the problem of image inpainting is addressed using sparse approximation of local image patches. The small patches are extracted by sliding square windows. An adaptive window selection procedure for local sparse approximation is proposed, which affects the global recovery of underlying image. Ideally the adaptive window selection yields the minimum mean square error (MMSE) in a recovered image. This framework gives us a clustered image based on the selected window size, each cluster is then inpainted separately using sparse approximation. The results obtained using the proposed framework are comparable with the recently proposed inpainting techniques based on sparse representation.","PeriodicalId":223520,"journal":{"name":"2011 IEEE 7th International Symposium on Intelligent Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Image inpainting using sparse approximation with adaptive window selection\",\"authors\":\"S. K. Sahoo, Wenmiao Lu\",\"doi\":\"10.1109/WISP.2011.6051703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the problem of image inpainting is addressed using sparse approximation of local image patches. The small patches are extracted by sliding square windows. An adaptive window selection procedure for local sparse approximation is proposed, which affects the global recovery of underlying image. Ideally the adaptive window selection yields the minimum mean square error (MMSE) in a recovered image. This framework gives us a clustered image based on the selected window size, each cluster is then inpainted separately using sparse approximation. The results obtained using the proposed framework are comparable with the recently proposed inpainting techniques based on sparse representation.\",\"PeriodicalId\":223520,\"journal\":{\"name\":\"2011 IEEE 7th International Symposium on Intelligent Signal Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2011.6051703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2011.6051703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用局部图像块的稀疏逼近方法解决了图像补图问题。通过滑动方形窗口提取小块。提出了一种局部稀疏逼近的自适应窗口选择方法,该方法影响底层图像的全局恢复。理想情况下,自适应窗口选择在恢复图像中产生最小均方误差(MMSE)。该框架根据所选择的窗口大小为我们提供了一个聚类图像,然后使用稀疏近似分别对每个聚类进行绘制。使用该框架获得的结果与最近提出的基于稀疏表示的图像绘制技术相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image inpainting using sparse approximation with adaptive window selection
In this paper the problem of image inpainting is addressed using sparse approximation of local image patches. The small patches are extracted by sliding square windows. An adaptive window selection procedure for local sparse approximation is proposed, which affects the global recovery of underlying image. Ideally the adaptive window selection yields the minimum mean square error (MMSE) in a recovered image. This framework gives us a clustered image based on the selected window size, each cluster is then inpainted separately using sparse approximation. The results obtained using the proposed framework are comparable with the recently proposed inpainting techniques based on sparse representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信