基于学习的VVC帧内预测复杂度降低方案

Mário Saldanha, G. Sanchez, C. Marcon, L. Agostini
{"title":"基于学习的VVC帧内预测复杂度降低方案","authors":"Mário Saldanha, G. Sanchez, C. Marcon, L. Agostini","doi":"10.1109/VCIP53242.2021.9675394","DOIUrl":null,"url":null,"abstract":"This paper presents a learning-based complexity reduction scheme for Versatile Video Coding (VVC) intra-frame prediction. VVC introduces several novel coding tools to improve the coding efficiency of the intra-frame prediction at the cost of a high computational effort. Thus, we developed an efficient complexity reduction scheme composed of three solutions based on machine learning and statistical analysis to reduce the number of intra prediction modes evaluated in the costly Rate-Distortion Optimization (RDO) process. Experimental results demonstrated that the proposed solution provides 18.32% encoding timesaving with a negligible impact on the coding efficiency.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning-Based Complexity Reduction Scheme for VVC Intra-Frame Prediction\",\"authors\":\"Mário Saldanha, G. Sanchez, C. Marcon, L. Agostini\",\"doi\":\"10.1109/VCIP53242.2021.9675394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a learning-based complexity reduction scheme for Versatile Video Coding (VVC) intra-frame prediction. VVC introduces several novel coding tools to improve the coding efficiency of the intra-frame prediction at the cost of a high computational effort. Thus, we developed an efficient complexity reduction scheme composed of three solutions based on machine learning and statistical analysis to reduce the number of intra prediction modes evaluated in the costly Rate-Distortion Optimization (RDO) process. Experimental results demonstrated that the proposed solution provides 18.32% encoding timesaving with a negligible impact on the coding efficiency.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于学习的通用视频编码帧内预测复杂度降低方案。VVC引入了一些新的编码工具,以提高帧内预测的编码效率,但代价是大量的计算量。因此,我们开发了一种有效的复杂性降低方案,该方案由基于机器学习和统计分析的三种解决方案组成,以减少在代价高昂的率失真优化(RDO)过程中评估的内预测模式的数量。实验结果表明,该方案可节省18.32%的编码时间,而对编码效率的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Complexity Reduction Scheme for VVC Intra-Frame Prediction
This paper presents a learning-based complexity reduction scheme for Versatile Video Coding (VVC) intra-frame prediction. VVC introduces several novel coding tools to improve the coding efficiency of the intra-frame prediction at the cost of a high computational effort. Thus, we developed an efficient complexity reduction scheme composed of three solutions based on machine learning and statistical analysis to reduce the number of intra prediction modes evaluated in the costly Rate-Distortion Optimization (RDO) process. Experimental results demonstrated that the proposed solution provides 18.32% encoding timesaving with a negligible impact on the coding efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信