基于增强的分布式会议多模态说话人检测

Cha Zhang, Pei Yin, Y. Rui, Ross Cutler, Paul A. Viola
{"title":"基于增强的分布式会议多模态说话人检测","authors":"Cha Zhang, Pei Yin, Y. Rui, Ross Cutler, Paul A. Viola","doi":"10.1109/MMSP.2006.285274","DOIUrl":null,"url":null,"abstract":"Speaker detection is a very important task in distributed meeting applications. This paper discusses a number of challenges we met while designing a speaker detector for the Microsoft RoundTable distributed meeting device, and proposes a boosting-based multimodal speaker detection (BMSD) algorithm. Instead of performing sound source localization (SSL) and multi-person detection (MPD) separately and subsequently fusing their individual results, the proposed algorithm uses boosting to select features from a combined pool of both audio and visual features simultaneously. The result is a very accurate speaker detector with extremely high efficiency. The algorithm reduces the error rate of SSL-only approach by 47%, and the SSL and MPD fusion approach by 27%","PeriodicalId":267577,"journal":{"name":"2006 IEEE Workshop on Multimedia Signal Processing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Boosting-Based Multimodal Speaker Detection for Distributed Meetings\",\"authors\":\"Cha Zhang, Pei Yin, Y. Rui, Ross Cutler, Paul A. Viola\",\"doi\":\"10.1109/MMSP.2006.285274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker detection is a very important task in distributed meeting applications. This paper discusses a number of challenges we met while designing a speaker detector for the Microsoft RoundTable distributed meeting device, and proposes a boosting-based multimodal speaker detection (BMSD) algorithm. Instead of performing sound source localization (SSL) and multi-person detection (MPD) separately and subsequently fusing their individual results, the proposed algorithm uses boosting to select features from a combined pool of both audio and visual features simultaneously. The result is a very accurate speaker detector with extremely high efficiency. The algorithm reduces the error rate of SSL-only approach by 47%, and the SSL and MPD fusion approach by 27%\",\"PeriodicalId\":267577,\"journal\":{\"name\":\"2006 IEEE Workshop on Multimedia Signal Processing\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2006.285274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2006.285274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在分布式会议应用中,说话人检测是一项非常重要的任务。本文讨论了在为微软圆桌会议分布式会议设备设计说话人检测器时遇到的一些问题,并提出了一种基于增强的多模态说话人检测算法。该算法不是分别执行声源定位(SSL)和多人检测(MPD),然后融合各自的结果,而是使用增强技术同时从音频和视觉特征的组合池中选择特征。其结果是一个非常精确的扬声器探测器,具有极高的效率。该算法将SSL-only方法的错误率降低了47%,将SSL和MPD融合方法的错误率降低了27%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting-Based Multimodal Speaker Detection for Distributed Meetings
Speaker detection is a very important task in distributed meeting applications. This paper discusses a number of challenges we met while designing a speaker detector for the Microsoft RoundTable distributed meeting device, and proposes a boosting-based multimodal speaker detection (BMSD) algorithm. Instead of performing sound source localization (SSL) and multi-person detection (MPD) separately and subsequently fusing their individual results, the proposed algorithm uses boosting to select features from a combined pool of both audio and visual features simultaneously. The result is a very accurate speaker detector with extremely high efficiency. The algorithm reduces the error rate of SSL-only approach by 47%, and the SSL and MPD fusion approach by 27%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信