在数字FIR网络中使用GREMLIN

M. Diepenhorst, W. Jansen, J. Nijhuis, M. Schreiner, L. Spaanenburg, A. Ypma
{"title":"在数字FIR网络中使用GREMLIN","authors":"M. Diepenhorst, W. Jansen, J. Nijhuis, M. Schreiner, L. Spaanenburg, A. Ypma","doi":"10.1109/MNNFS.1996.493813","DOIUrl":null,"url":null,"abstract":"Time-delay neural networks are well-suited for prediction purposes. A particular implementation is the Finite Impulse Response neural net. The GREMLIN architecture is introduced to accommodate such networks. It can be micropipelined to achieve a 85 MCPS performance on a conventional connection-serial structure and allows from its Logic-Enhance Memory nature an easily parametrized design. A typical design for biomedical applications can be trained in a Cascade fashion and subsequently mapped.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using the GREMLIN for digital FIR networks\",\"authors\":\"M. Diepenhorst, W. Jansen, J. Nijhuis, M. Schreiner, L. Spaanenburg, A. Ypma\",\"doi\":\"10.1109/MNNFS.1996.493813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-delay neural networks are well-suited for prediction purposes. A particular implementation is the Finite Impulse Response neural net. The GREMLIN architecture is introduced to accommodate such networks. It can be micropipelined to achieve a 85 MCPS performance on a conventional connection-serial structure and allows from its Logic-Enhance Memory nature an easily parametrized design. A typical design for biomedical applications can be trained in a Cascade fashion and subsequently mapped.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

时滞神经网络非常适合于预测目的。一个特殊的实现是有限脉冲响应神经网络。引入GREMLIN架构就是为了适应这样的网络。它可以通过微流水线在传统的连接串行结构上实现85 MCPS的性能,并且可以通过其逻辑增强存储器的特性轻松进行参数化设计。生物医学应用的典型设计可以以级联方式进行训练并随后进行映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using the GREMLIN for digital FIR networks
Time-delay neural networks are well-suited for prediction purposes. A particular implementation is the Finite Impulse Response neural net. The GREMLIN architecture is introduced to accommodate such networks. It can be micropipelined to achieve a 85 MCPS performance on a conventional connection-serial structure and allows from its Logic-Enhance Memory nature an easily parametrized design. A typical design for biomedical applications can be trained in a Cascade fashion and subsequently mapped.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信