{"title":"通信中的受限资源分配问题:一种信息辅助方法","authors":"I. Ahmed, H. Sadjadpour, S. Yousefi","doi":"10.1109/MILCOM52596.2021.9652917","DOIUrl":null,"url":null,"abstract":"We consider a class of resource allocation problems given a set of unconditional constraints whose objective function satisfies Bellman's optimality principle. Such problems are ubiquitous in wireless communication, signal processing, and networking. These constrained combinatorial optimization problems are, in general, NP-Hard. This paper proposes two algorithms to solve this class of problems using a dynamic programming framework assisted by an information-theoretic measure. We demonstrate that the proposed algorithms ensure optimal solutions under carefully chosen conditions and use significantly reduced computational resources. We substantiate our claims by solving the power-constrained bit allocation problem in 5G massive Multiple-Input Multiple-Output receivers using the proposed approach.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constrained Resource Allocation Problems in Communications: An Information-assisted Approach\",\"authors\":\"I. Ahmed, H. Sadjadpour, S. Yousefi\",\"doi\":\"10.1109/MILCOM52596.2021.9652917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of resource allocation problems given a set of unconditional constraints whose objective function satisfies Bellman's optimality principle. Such problems are ubiquitous in wireless communication, signal processing, and networking. These constrained combinatorial optimization problems are, in general, NP-Hard. This paper proposes two algorithms to solve this class of problems using a dynamic programming framework assisted by an information-theoretic measure. We demonstrate that the proposed algorithms ensure optimal solutions under carefully chosen conditions and use significantly reduced computational resources. We substantiate our claims by solving the power-constrained bit allocation problem in 5G massive Multiple-Input Multiple-Output receivers using the proposed approach.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9652917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9652917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constrained Resource Allocation Problems in Communications: An Information-assisted Approach
We consider a class of resource allocation problems given a set of unconditional constraints whose objective function satisfies Bellman's optimality principle. Such problems are ubiquitous in wireless communication, signal processing, and networking. These constrained combinatorial optimization problems are, in general, NP-Hard. This paper proposes two algorithms to solve this class of problems using a dynamic programming framework assisted by an information-theoretic measure. We demonstrate that the proposed algorithms ensure optimal solutions under carefully chosen conditions and use significantly reduced computational resources. We substantiate our claims by solving the power-constrained bit allocation problem in 5G massive Multiple-Input Multiple-Output receivers using the proposed approach.