CµFD:微流体系统仿真

F. Schönfeld, K. Drese, S. Hardt
{"title":"CµFD:微流体系统仿真","authors":"F. Schönfeld, K. Drese, S. Hardt","doi":"10.59972/5f1ncmu3","DOIUrl":null,"url":null,"abstract":"We discuss the applicability of standard CFD techniques in µ-fluidics, highlight challenges and introduce methods which allow for corresponding extensions. The focus is especially on problems of major practical importance, namely liquid mixing in micro mixers and free-surface micro flows. With respect to the former two approaches are presented allowing eliminating the problems due to numerical discretisation errors for specific cases of miscible liquids. In the case of emulsion formation of immiscible liquids the RayleighPlateau decay is identified to be the driving mechanism for droplet formation under certain process conditions. Furthermore we investigate capillary filling of a narrow slit, where a special focus is put on the effects induced by a dynamic variation of the contact angle. The test case shows that on practically manageable grids the dynamic behaviour of the contact angle cannot be sufficiently reproduced. A result of the studies performed is the possibility to incorporate the correct contact-angle dynamics even on comparatively coarse grids by introducing a macroscopic slip range at the 3-phase contact line. By virtue of such an “artificial slip method”, correct results for free-surface micro flows can be obtained on grids with a moderate number of computational cells, without the need to resolve the contact line very accurately. Finally, a micro fluidic application involving both mixing of miscible liquids and free-surface flows is exemplarily outlined as one of the future challenges.","PeriodicalId":183819,"journal":{"name":"NAFEMS International Journal of CFD Case Studies","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CµFD: Simulation of Microfluidic Systems\",\"authors\":\"F. Schönfeld, K. Drese, S. Hardt\",\"doi\":\"10.59972/5f1ncmu3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the applicability of standard CFD techniques in µ-fluidics, highlight challenges and introduce methods which allow for corresponding extensions. The focus is especially on problems of major practical importance, namely liquid mixing in micro mixers and free-surface micro flows. With respect to the former two approaches are presented allowing eliminating the problems due to numerical discretisation errors for specific cases of miscible liquids. In the case of emulsion formation of immiscible liquids the RayleighPlateau decay is identified to be the driving mechanism for droplet formation under certain process conditions. Furthermore we investigate capillary filling of a narrow slit, where a special focus is put on the effects induced by a dynamic variation of the contact angle. The test case shows that on practically manageable grids the dynamic behaviour of the contact angle cannot be sufficiently reproduced. A result of the studies performed is the possibility to incorporate the correct contact-angle dynamics even on comparatively coarse grids by introducing a macroscopic slip range at the 3-phase contact line. By virtue of such an “artificial slip method”, correct results for free-surface micro flows can be obtained on grids with a moderate number of computational cells, without the need to resolve the contact line very accurately. Finally, a micro fluidic application involving both mixing of miscible liquids and free-surface flows is exemplarily outlined as one of the future challenges.\",\"PeriodicalId\":183819,\"journal\":{\"name\":\"NAFEMS International Journal of CFD Case Studies\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFEMS International Journal of CFD Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59972/5f1ncmu3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFEMS International Journal of CFD Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59972/5f1ncmu3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了标准CFD技术在微流体中的适用性,强调了挑战,并介绍了允许相应扩展的方法。重点是具有重大实际意义的问题,即微型混合器中的液体混合和自由表面微流动。对于前两种方法,提出了允许消除由于数值离散误差的问题,为特定情况下的混相液体。在非混相液体形成乳化液的情况下,在一定的工艺条件下,瑞利高原衰减被确定为液滴形成的驱动机制。此外,我们研究了窄缝的毛细填充,其中特别关注接触角动态变化引起的影响。试验实例表明,在实际可管理的网格上,接触角的动态特性不能充分再现。所进行的研究的结果是,即使在相对粗糙的网格上,通过在三相接触线上引入宏观滑移范围,也有可能纳入正确的接触角动力学。利用这种“人工滑移法”,可以在计算单元数适中的网格上得到自由表面微流动的正确结果,而不需要非常精确地求解接触线。最后,涉及混相液体和自由表面流动的微流体应用被举例概述为未来的挑战之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CµFD: Simulation of Microfluidic Systems
We discuss the applicability of standard CFD techniques in µ-fluidics, highlight challenges and introduce methods which allow for corresponding extensions. The focus is especially on problems of major practical importance, namely liquid mixing in micro mixers and free-surface micro flows. With respect to the former two approaches are presented allowing eliminating the problems due to numerical discretisation errors for specific cases of miscible liquids. In the case of emulsion formation of immiscible liquids the RayleighPlateau decay is identified to be the driving mechanism for droplet formation under certain process conditions. Furthermore we investigate capillary filling of a narrow slit, where a special focus is put on the effects induced by a dynamic variation of the contact angle. The test case shows that on practically manageable grids the dynamic behaviour of the contact angle cannot be sufficiently reproduced. A result of the studies performed is the possibility to incorporate the correct contact-angle dynamics even on comparatively coarse grids by introducing a macroscopic slip range at the 3-phase contact line. By virtue of such an “artificial slip method”, correct results for free-surface micro flows can be obtained on grids with a moderate number of computational cells, without the need to resolve the contact line very accurately. Finally, a micro fluidic application involving both mixing of miscible liquids and free-surface flows is exemplarily outlined as one of the future challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信