拟合曲线与平面数字数据

M. Sarfraz
{"title":"拟合曲线与平面数字数据","authors":"M. Sarfraz","doi":"10.1109/IV.2002.1028841","DOIUrl":null,"url":null,"abstract":"An optimal curve fitting technique has been developed which is meant to automatically provide a fit to any ordered digital data in a plane. A more flexible class of rational cubic functions is the basis of this technique. This class of functions involves two control parameters, which help to produce an optimal curve fit. The curve technique has used various ideas for curve design. These ideas include end-point interpolation, intermediate point interpolation, detection of characteristic points, and parameterization. The final shape is achieved by stitching the generalized Bezier cubic pieces with C/sup 1/ smoothness.","PeriodicalId":308951,"journal":{"name":"Proceedings Sixth International Conference on Information Visualisation","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Fitting curve to planar digital data\",\"authors\":\"M. Sarfraz\",\"doi\":\"10.1109/IV.2002.1028841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal curve fitting technique has been developed which is meant to automatically provide a fit to any ordered digital data in a plane. A more flexible class of rational cubic functions is the basis of this technique. This class of functions involves two control parameters, which help to produce an optimal curve fit. The curve technique has used various ideas for curve design. These ideas include end-point interpolation, intermediate point interpolation, detection of characteristic points, and parameterization. The final shape is achieved by stitching the generalized Bezier cubic pieces with C/sup 1/ smoothness.\",\"PeriodicalId\":308951,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Information Visualisation\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Information Visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV.2002.1028841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2002.1028841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种最优曲线拟合技术,它可以自动地对平面上任意有序的数字数据进行拟合。一种更灵活的有理三次函数是这种技术的基础。这类函数包括两个控制参数,这有助于产生最优的曲线拟合。曲线技术在曲线设计中运用了各种各样的思想。这些思想包括端点插值、中间点插值、特征点检测和参数化。采用C/sup 1/平滑度对广义贝塞尔三次块进行拼接,得到最终形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting curve to planar digital data
An optimal curve fitting technique has been developed which is meant to automatically provide a fit to any ordered digital data in a plane. A more flexible class of rational cubic functions is the basis of this technique. This class of functions involves two control parameters, which help to produce an optimal curve fit. The curve technique has used various ideas for curve design. These ideas include end-point interpolation, intermediate point interpolation, detection of characteristic points, and parameterization. The final shape is achieved by stitching the generalized Bezier cubic pieces with C/sup 1/ smoothness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信