具有H∞误差界的稳态卡尔曼滤波

D. Bernstein, W. Haddad
{"title":"具有H∞误差界的稳态卡尔曼滤波","authors":"D. Bernstein, W. Haddad","doi":"10.1109/ACC.1989.4173324","DOIUrl":null,"url":null,"abstract":"An estimator design problem is considered which involves both L<sub>2</sub> (least squares) and H<sub>∞</sub> (worst-case frequency-domain) aspects. Specifically, the goal of the problem is to minimize an L<sub>2</sub> state-estimation error criterion subject to a prespecified H<sub>∞</sub> constraint on the state-estimation error. The H<sub>∞</sub> estimation-error constraint is embedded within the optimization process by replacing the covariance Lyapunov equation by a Riccati equation whose solution leads to an upper bound on the L<sub>2</sub> state-estimation error. The principal result is a sufficient condition for characterizing fixed-order (i.e., full- and reduced-order) estimator with bounded L<sub>2</sub> and H<sub>∞</sub> estimation error. The sufficient condition involves a system of modified Riccati equations coupled by an oblique projection, i.e., idempotent matrix. When the H<sub>∞</sub> constraint is absent, the sufficient condition specializes to the L<sub>2</sub> state-estimation result given in [2]. The full version of this paper can be found in [10].","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Steady-state kalman filtering with an H∞ error bound\",\"authors\":\"D. Bernstein, W. Haddad\",\"doi\":\"10.1109/ACC.1989.4173324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An estimator design problem is considered which involves both L<sub>2</sub> (least squares) and H<sub>∞</sub> (worst-case frequency-domain) aspects. Specifically, the goal of the problem is to minimize an L<sub>2</sub> state-estimation error criterion subject to a prespecified H<sub>∞</sub> constraint on the state-estimation error. The H<sub>∞</sub> estimation-error constraint is embedded within the optimization process by replacing the covariance Lyapunov equation by a Riccati equation whose solution leads to an upper bound on the L<sub>2</sub> state-estimation error. The principal result is a sufficient condition for characterizing fixed-order (i.e., full- and reduced-order) estimator with bounded L<sub>2</sub> and H<sub>∞</sub> estimation error. The sufficient condition involves a system of modified Riccati equations coupled by an oblique projection, i.e., idempotent matrix. When the H<sub>∞</sub> constraint is absent, the sufficient condition specializes to the L<sub>2</sub> state-estimation result given in [2]. The full version of this paper can be found in [10].\",\"PeriodicalId\":383719,\"journal\":{\"name\":\"1989 American Control Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1989.4173324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1989.4173324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

考虑了一个估计器设计问题,该问题涉及L2(最小二乘)和H∞(最坏情况频域)两个方面。具体来说,该问题的目标是最小化L2状态估计误差准则,该准则受制于对状态估计误差的预先指定的H∞约束。将H∞估计误差约束嵌入到优化过程中,将协方差Lyapunov方程替换为Riccati方程,该方程的解导致L2状态估计误差的上界。主要结果是刻画具有有界L2和H∞估计误差的定阶(即满阶和降阶)估计量的充分条件。该充分条件涉及到一个由斜投影耦合的修正Riccati方程组,即幂等矩阵。当H∞约束不存在时,其充分条件专一于[2]给出的L2状态估计结果。本文全文可参见[10]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady-state kalman filtering with an H∞ error bound
An estimator design problem is considered which involves both L2 (least squares) and H (worst-case frequency-domain) aspects. Specifically, the goal of the problem is to minimize an L2 state-estimation error criterion subject to a prespecified H constraint on the state-estimation error. The H estimation-error constraint is embedded within the optimization process by replacing the covariance Lyapunov equation by a Riccati equation whose solution leads to an upper bound on the L2 state-estimation error. The principal result is a sufficient condition for characterizing fixed-order (i.e., full- and reduced-order) estimator with bounded L2 and H estimation error. The sufficient condition involves a system of modified Riccati equations coupled by an oblique projection, i.e., idempotent matrix. When the H constraint is absent, the sufficient condition specializes to the L2 state-estimation result given in [2]. The full version of this paper can be found in [10].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信