一种用于睡眠阶段分类的紧凑深度学习网络

A. Vetek, Kiti Müller, H. Lindholm
{"title":"一种用于睡眠阶段分类的紧凑深度学习网络","authors":"A. Vetek, Kiti Müller, H. Lindholm","doi":"10.1109/LSC.2018.8572286","DOIUrl":null,"url":null,"abstract":"Sleep stage classification is usually performed by trained professionals using visual inspection of bio-electrical recordings from a subject and is the first step in quantifying the quality of sleep and diagnosing sleep disorders. We introduce an extensible, modality-agnostic deep learning system to automate the task of temporal sleep stage classification from raw electroencephalography, electrooculography and electromyography signals. The proposed architecture uses a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN). The compact size of the system makes it not only computationally efficient but also more appropriate for smaller datasets. We evaluated the proposed system on a sleep dataset collected in a home environment from healthy subjects and found that the incorporation of temporal information (sleep stage transitions) boosted overall performance in terms of macro-average F1 scores, and in particular provided a significant improvement for the worst performing class, N1 compared to other approaches.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Compact Deep Learning Network for Temporal Sleep Stage Classification\",\"authors\":\"A. Vetek, Kiti Müller, H. Lindholm\",\"doi\":\"10.1109/LSC.2018.8572286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep stage classification is usually performed by trained professionals using visual inspection of bio-electrical recordings from a subject and is the first step in quantifying the quality of sleep and diagnosing sleep disorders. We introduce an extensible, modality-agnostic deep learning system to automate the task of temporal sleep stage classification from raw electroencephalography, electrooculography and electromyography signals. The proposed architecture uses a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN). The compact size of the system makes it not only computationally efficient but also more appropriate for smaller datasets. We evaluated the proposed system on a sleep dataset collected in a home environment from healthy subjects and found that the incorporation of temporal information (sleep stage transitions) boosted overall performance in terms of macro-average F1 scores, and in particular provided a significant improvement for the worst performing class, N1 compared to other approaches.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

睡眠阶段分类通常由训练有素的专业人员通过对受试者的生物电记录进行视觉检查来完成,这是量化睡眠质量和诊断睡眠障碍的第一步。我们引入了一个可扩展的、模态不可知的深度学习系统,从原始脑电图、眼电图和肌电图信号中自动完成时间睡眠阶段分类任务。所提出的架构使用卷积神经网络(CNN)和循环神经网络(RNN)的组合。系统的紧凑尺寸使其不仅计算效率高,而且更适合较小的数据集。我们在健康受试者的家庭环境中收集的睡眠数据集上对所提出的系统进行了评估,发现时间信息(睡眠阶段转换)的结合提高了宏观平均F1分数的整体表现,特别是与其他方法相比,对表现最差的N1班级提供了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compact Deep Learning Network for Temporal Sleep Stage Classification
Sleep stage classification is usually performed by trained professionals using visual inspection of bio-electrical recordings from a subject and is the first step in quantifying the quality of sleep and diagnosing sleep disorders. We introduce an extensible, modality-agnostic deep learning system to automate the task of temporal sleep stage classification from raw electroencephalography, electrooculography and electromyography signals. The proposed architecture uses a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN). The compact size of the system makes it not only computationally efficient but also more appropriate for smaller datasets. We evaluated the proposed system on a sleep dataset collected in a home environment from healthy subjects and found that the incorporation of temporal information (sleep stage transitions) boosted overall performance in terms of macro-average F1 scores, and in particular provided a significant improvement for the worst performing class, N1 compared to other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信