{"title":"建立原子重力仪的相对论模型","authors":"Ya-jie Wang, Y. Tan, C. Shao","doi":"10.1142/9789811213984_0036","DOIUrl":null,"url":null,"abstract":"This work establishes a high-precision relativistic theoretical model: start from studying finite speed of light effect based on a coordinate transformation, and further extend the research methods to analyze the overall relativistic effects. This model promotes the development of testing General Relativity with atomic interferometry.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a Relativistic Model for Atomic Gravimeters\",\"authors\":\"Ya-jie Wang, Y. Tan, C. Shao\",\"doi\":\"10.1142/9789811213984_0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work establishes a high-precision relativistic theoretical model: start from studying finite speed of light effect based on a coordinate transformation, and further extend the research methods to analyze the overall relativistic effects. This model promotes the development of testing General Relativity with atomic interferometry.\",\"PeriodicalId\":104099,\"journal\":{\"name\":\"CPT and Lorentz Symmetry\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT and Lorentz Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811213984_0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811213984_0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishing a Relativistic Model for Atomic Gravimeters
This work establishes a high-precision relativistic theoretical model: start from studying finite speed of light effect based on a coordinate transformation, and further extend the research methods to analyze the overall relativistic effects. This model promotes the development of testing General Relativity with atomic interferometry.