Lambek-Grishin微积分的证明网

M. Moortgat, R. Moot
{"title":"Lambek-Grishin微积分的证明网","authors":"M. Moortgat, R. Moot","doi":"10.1093/acprof:oso/9780199646296.003.0010","DOIUrl":null,"url":null,"abstract":"Grishin's generalization of Lambek's Syntactic Calculus combines a non-commutative multiplicative conjunction and its residuals (product, left and right division) with a dual family: multiplicative disjunction, right and left difference. Interaction between these two families takes the form of linear distributivity principles. We study proof nets for the Lambek-Grishin calculus and the correspondence between these nets and unfocused and focused versions of its sequent calculus.","PeriodicalId":273067,"journal":{"name":"Quantum Physics and Linguistics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Proof nets for the Lambek-Grishin calculus\",\"authors\":\"M. Moortgat, R. Moot\",\"doi\":\"10.1093/acprof:oso/9780199646296.003.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grishin's generalization of Lambek's Syntactic Calculus combines a non-commutative multiplicative conjunction and its residuals (product, left and right division) with a dual family: multiplicative disjunction, right and left difference. Interaction between these two families takes the form of linear distributivity principles. We study proof nets for the Lambek-Grishin calculus and the correspondence between these nets and unfocused and focused versions of its sequent calculus.\",\"PeriodicalId\":273067,\"journal\":{\"name\":\"Quantum Physics and Linguistics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Physics and Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/acprof:oso/9780199646296.003.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Physics and Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780199646296.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

Grishin对Lambek句法演算的推广,将一个非交换的乘法合式及其残差(乘积、左右除法)与一个对偶族:乘法析取、左右差结合起来。这两个族之间的相互作用采用线性分配原理的形式。我们研究了Lambek-Grishin演算的证明网,以及这些证明网与Lambek-Grishin演算的非聚焦和聚焦版本之间的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof nets for the Lambek-Grishin calculus
Grishin's generalization of Lambek's Syntactic Calculus combines a non-commutative multiplicative conjunction and its residuals (product, left and right division) with a dual family: multiplicative disjunction, right and left difference. Interaction between these two families takes the form of linear distributivity principles. We study proof nets for the Lambek-Grishin calculus and the correspondence between these nets and unfocused and focused versions of its sequent calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信