柔性连杆机器人模糊多参考模型自适应控制方案

S. Kamalasadan, A. Ghandakly, K. Al-Olimat
{"title":"柔性连杆机器人模糊多参考模型自适应控制方案","authors":"S. Kamalasadan, A. Ghandakly, K. Al-Olimat","doi":"10.1109/CIMSA.2004.1397255","DOIUrl":null,"url":null,"abstract":"In this paper a novel fuzzy logic based multiple reference model adaptive controller approach for the position control of a single link robotic manipulator is presented. The proposed fuzzy logic scheme is used for generating multiple reference models, within the model reference adaptive control (MRAC) framework, in response to changes in modes of operation or modal swings due to manipulator tip load variation. Thus the scheme is utilized to generate dynamic reference model and the overall structure is coined as fuzzy multiple reference model adaptive controller (FMRMAC). Following a rule base the fuzzy switching scheme effectively monitors changes in operating conditions due to tip load variation. A fuzzy inference engine then fires appropriate rules, which gives a fuzzified output value. Further defuzzification is performed to switch the reference model in a predefined domain. The main contribution of the paper is that the proposed approach can be performed online and is very well suitable for plants showing sudden 'jump' in operating conditions. Unlike, static multiple model algorithms for switching (noninteracting individual model-based filters) or switching dynamic algorithms (susceptible to numerical overflow), this scheme provides an interactive multiple model environment with soft switching. This approach is found to be every effective and fault tolerant.","PeriodicalId":102405,"journal":{"name":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A fuzzy multiple reference model adaptive control scheme for flexible link robotic manipulator\",\"authors\":\"S. Kamalasadan, A. Ghandakly, K. Al-Olimat\",\"doi\":\"10.1109/CIMSA.2004.1397255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel fuzzy logic based multiple reference model adaptive controller approach for the position control of a single link robotic manipulator is presented. The proposed fuzzy logic scheme is used for generating multiple reference models, within the model reference adaptive control (MRAC) framework, in response to changes in modes of operation or modal swings due to manipulator tip load variation. Thus the scheme is utilized to generate dynamic reference model and the overall structure is coined as fuzzy multiple reference model adaptive controller (FMRMAC). Following a rule base the fuzzy switching scheme effectively monitors changes in operating conditions due to tip load variation. A fuzzy inference engine then fires appropriate rules, which gives a fuzzified output value. Further defuzzification is performed to switch the reference model in a predefined domain. The main contribution of the paper is that the proposed approach can be performed online and is very well suitable for plants showing sudden 'jump' in operating conditions. Unlike, static multiple model algorithms for switching (noninteracting individual model-based filters) or switching dynamic algorithms (susceptible to numerical overflow), this scheme provides an interactive multiple model environment with soft switching. This approach is found to be every effective and fault tolerant.\",\"PeriodicalId\":102405,\"journal\":{\"name\":\"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2004.1397255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2004.1397255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种基于模糊逻辑的多参考模型自适应单连杆机械手位置控制方法。提出的模糊逻辑方案用于在模型参考自适应控制(MRAC)框架内生成多个参考模型,以响应由于机械手尖端载荷变化而导致的操作模式变化或模态波动。利用该方案生成动态参考模型,将整体结构称为模糊多参考模型自适应控制器(FMRMAC)。模糊切换方案以规则为基础,有效地监测了机头负荷变化引起的工况变化。然后,模糊推理引擎触发适当的规则,给出模糊化的输出值。执行进一步的去模糊化以在预定义的域中切换参考模型。本文的主要贡献在于,所提出的方法可以在线执行,并且非常适用于运行条件突然“跳跃”的工厂。与用于交换的静态多模型算法(非相互作用的基于个体模型的滤波器)或交换动态算法(易受数值溢出影响)不同,该方案提供了具有软交换的交互式多模型环境。这种方法是非常有效和容错的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy multiple reference model adaptive control scheme for flexible link robotic manipulator
In this paper a novel fuzzy logic based multiple reference model adaptive controller approach for the position control of a single link robotic manipulator is presented. The proposed fuzzy logic scheme is used for generating multiple reference models, within the model reference adaptive control (MRAC) framework, in response to changes in modes of operation or modal swings due to manipulator tip load variation. Thus the scheme is utilized to generate dynamic reference model and the overall structure is coined as fuzzy multiple reference model adaptive controller (FMRMAC). Following a rule base the fuzzy switching scheme effectively monitors changes in operating conditions due to tip load variation. A fuzzy inference engine then fires appropriate rules, which gives a fuzzified output value. Further defuzzification is performed to switch the reference model in a predefined domain. The main contribution of the paper is that the proposed approach can be performed online and is very well suitable for plants showing sudden 'jump' in operating conditions. Unlike, static multiple model algorithms for switching (noninteracting individual model-based filters) or switching dynamic algorithms (susceptible to numerical overflow), this scheme provides an interactive multiple model environment with soft switching. This approach is found to be every effective and fault tolerant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信