基于景观模态估计的动态搜索策略粒子群优化

Toshiki Nishio, J. Kushida, Akira Hara, T. Takahama
{"title":"基于景观模态估计的动态搜索策略粒子群优化","authors":"Toshiki Nishio, J. Kushida, Akira Hara, T. Takahama","doi":"10.1109/IWCIA.2016.7805758","DOIUrl":null,"url":null,"abstract":"The paper presents particle swarm optimization (PSO) with dynamic search strategies based on landscape modality estimation. In order to control search strategies, we introduce landscape modality estimation method using correlation coefficients between rankings of search points to PSO. This estimation method utilizes relationship between fitness and distance to a reference point to classify whether the landscape modality is uni-modal or multi-modal landscape. Our proposal method can switch the strategies properly according to landscape modality of an objective function. To confirm the search ability of the proposal method, we conducted experiments using standard benchmark functions. The experimental results show that the proposal method outperforms other PSO variants.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle swarm optimization with dynamic search strategies based on landscape modality estimation\",\"authors\":\"Toshiki Nishio, J. Kushida, Akira Hara, T. Takahama\",\"doi\":\"10.1109/IWCIA.2016.7805758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents particle swarm optimization (PSO) with dynamic search strategies based on landscape modality estimation. In order to control search strategies, we introduce landscape modality estimation method using correlation coefficients between rankings of search points to PSO. This estimation method utilizes relationship between fitness and distance to a reference point to classify whether the landscape modality is uni-modal or multi-modal landscape. Our proposal method can switch the strategies properly according to landscape modality of an objective function. To confirm the search ability of the proposal method, we conducted experiments using standard benchmark functions. The experimental results show that the proposal method outperforms other PSO variants.\",\"PeriodicalId\":262942,\"journal\":{\"name\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2016.7805758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了基于景观模态估计的粒子群动态搜索策略。为了控制搜索策略,我们引入了利用搜索点排名之间的相关系数对PSO进行景观模态估计的方法。该方法利用适应度与参考点距离的关系来判别景观形态是单模态还是多模态。我们的建议方法可以根据目标函数的景观形态进行适当的策略转换。为了验证提议方法的搜索能力,我们使用标准基准函数进行了实验。实验结果表明,该方法优于其他粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle swarm optimization with dynamic search strategies based on landscape modality estimation
The paper presents particle swarm optimization (PSO) with dynamic search strategies based on landscape modality estimation. In order to control search strategies, we introduce landscape modality estimation method using correlation coefficients between rankings of search points to PSO. This estimation method utilizes relationship between fitness and distance to a reference point to classify whether the landscape modality is uni-modal or multi-modal landscape. Our proposal method can switch the strategies properly according to landscape modality of an objective function. To confirm the search ability of the proposal method, we conducted experiments using standard benchmark functions. The experimental results show that the proposal method outperforms other PSO variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信