高斯正交规则的计算

G. Golub, John H. Welsch
{"title":"高斯正交规则的计算","authors":"G. Golub, John H. Welsch","doi":"10.1090/S0025-5718-69-99647-1","DOIUrl":null,"url":null,"abstract":"Most numerical integration techniques consist of approximating the integrand by a polynomial in a region or regions and then integrating the polynomial exactly. Often a complicated integrand can be factored into a non-negative ''weight'' function and another function better approximated by a polynomial, thus $\\int_{a}^{b} g(t)dt = \\int_{a}^{b} \\omega (t)f(t)dt \\approx \\sum_{i=1}^{N} w_i f(t_i)$. Hopefully, the quadrature rule ${\\{w_j, t_j\\}}_{j=1}^{N}$ corresponding to the weight function $\\omega$(t) is available in tabulated form, but more likely it is not. We present here two algorithms for generating the Gaussian quadrature rule defined by the weight function when: a) the three term recurrence relation is known for the orthogonal polynomials generated by $\\omega$(t), and b) the moments of the weight function are known or can be calculated.","PeriodicalId":250823,"journal":{"name":"Milestones in Matrix Computation","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1203","resultStr":"{\"title\":\"Calculation of Gauss quadrature rules\",\"authors\":\"G. Golub, John H. Welsch\",\"doi\":\"10.1090/S0025-5718-69-99647-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most numerical integration techniques consist of approximating the integrand by a polynomial in a region or regions and then integrating the polynomial exactly. Often a complicated integrand can be factored into a non-negative ''weight'' function and another function better approximated by a polynomial, thus $\\\\int_{a}^{b} g(t)dt = \\\\int_{a}^{b} \\\\omega (t)f(t)dt \\\\approx \\\\sum_{i=1}^{N} w_i f(t_i)$. Hopefully, the quadrature rule ${\\\\{w_j, t_j\\\\}}_{j=1}^{N}$ corresponding to the weight function $\\\\omega$(t) is available in tabulated form, but more likely it is not. We present here two algorithms for generating the Gaussian quadrature rule defined by the weight function when: a) the three term recurrence relation is known for the orthogonal polynomials generated by $\\\\omega$(t), and b) the moments of the weight function are known or can be calculated.\",\"PeriodicalId\":250823,\"journal\":{\"name\":\"Milestones in Matrix Computation\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1203\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Milestones in Matrix Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0025-5718-69-99647-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milestones in Matrix Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0025-5718-69-99647-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1203

摘要

大多数数值积分技术包括在一个或多个区域内用多项式逼近被积函数,然后对多项式进行精确积分。通常,一个复杂的被积函数可以分解成一个非负的“权重”函数和另一个更好地由多项式近似的函数,例如$\int_{a}^{b} g(t)dt = \int_{a}^{b} \omega (t)f(t)dt \approx \sum_{i=1}^{N} w_i f(t_i)$。希望,与权函数$\omega$ (t)对应的正交规则${\{w_j, t_j\}}_{j=1}^{N}$以表格形式可用,但更可能的是没有。在以下情况下,我们提出了两种生成权函数定义的高斯正交规则的算法:a)由$\omega$ (t)生成的正交多项式的三项递归关系已知,b)权函数的矩是已知的或可以计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of Gauss quadrature rules
Most numerical integration techniques consist of approximating the integrand by a polynomial in a region or regions and then integrating the polynomial exactly. Often a complicated integrand can be factored into a non-negative ''weight'' function and another function better approximated by a polynomial, thus $\int_{a}^{b} g(t)dt = \int_{a}^{b} \omega (t)f(t)dt \approx \sum_{i=1}^{N} w_i f(t_i)$. Hopefully, the quadrature rule ${\{w_j, t_j\}}_{j=1}^{N}$ corresponding to the weight function $\omega$(t) is available in tabulated form, but more likely it is not. We present here two algorithms for generating the Gaussian quadrature rule defined by the weight function when: a) the three term recurrence relation is known for the orthogonal polynomials generated by $\omega$(t), and b) the moments of the weight function are known or can be calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信