不确定环境下快速探索随机马尔可夫决策过程的运动规划

A. Rutherford, Paul Duckworth, N. Hawes, Bruno Lacerda
{"title":"不确定环境下快速探索随机马尔可夫决策过程的运动规划","authors":"A. Rutherford, Paul Duckworth, N. Hawes, Bruno Lacerda","doi":"10.1109/ecmr50962.2021.9568849","DOIUrl":null,"url":null,"abstract":"We propose rapidly-exploring random Markov decision processes (RRMDPs), a novel sampling-based motion planning approach for situations where the environment parameters are not fully known a priori, but a prior distribution over such parameters is available. Our algorithm combines ideas from established motion planning algorithms to achieve motion policies that are able to robustly drive the robot to its goal in the presence of uncertain action outcomes. We evaluate RRMDP in two domains, showing that it can synthesise motion policies that are more robust than the motion plans obtained by particle rapidly-exploring random trees (pRRT), a widely used algorithm for motion planning under uncertainty which RRMDP builds upon.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Motion Planning in Uncertain Environments with Rapidly-Exploring Random Markov Decision Processes\",\"authors\":\"A. Rutherford, Paul Duckworth, N. Hawes, Bruno Lacerda\",\"doi\":\"10.1109/ecmr50962.2021.9568849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose rapidly-exploring random Markov decision processes (RRMDPs), a novel sampling-based motion planning approach for situations where the environment parameters are not fully known a priori, but a prior distribution over such parameters is available. Our algorithm combines ideas from established motion planning algorithms to achieve motion policies that are able to robustly drive the robot to its goal in the presence of uncertain action outcomes. We evaluate RRMDP in two domains, showing that it can synthesise motion policies that are more robust than the motion plans obtained by particle rapidly-exploring random trees (pRRT), a widely used algorithm for motion planning under uncertainty which RRMDP builds upon.\",\"PeriodicalId\":200521,\"journal\":{\"name\":\"2021 European Conference on Mobile Robots (ECMR)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecmr50962.2021.9568849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了快速探索随机马尔可夫决策过程(rrmdp),这是一种新的基于采样的运动规划方法,适用于环境参数不完全先验,但这些参数的先验分布是可用的情况。我们的算法结合了已建立的运动规划算法的思想,以实现能够在存在不确定动作结果的情况下鲁棒地驱动机器人到达目标的运动策略。我们在两个领域评估了RRMDP,表明它可以合成比粒子快速探索随机树(pRRT)获得的运动计划更鲁棒的运动策略,pRRT是RRMDP建立在不确定性下运动规划的一种广泛使用的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Planning in Uncertain Environments with Rapidly-Exploring Random Markov Decision Processes
We propose rapidly-exploring random Markov decision processes (RRMDPs), a novel sampling-based motion planning approach for situations where the environment parameters are not fully known a priori, but a prior distribution over such parameters is available. Our algorithm combines ideas from established motion planning algorithms to achieve motion policies that are able to robustly drive the robot to its goal in the presence of uncertain action outcomes. We evaluate RRMDP in two domains, showing that it can synthesise motion policies that are more robust than the motion plans obtained by particle rapidly-exploring random trees (pRRT), a widely used algorithm for motion planning under uncertainty which RRMDP builds upon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信