基于Transformer的点云语义分割多视图网络

Zhongwei Hua, Daming Du
{"title":"基于Transformer的点云语义分割多视图网络","authors":"Zhongwei Hua, Daming Du","doi":"10.1145/3529466.3529504","DOIUrl":null,"url":null,"abstract":"The input of most point cloud semantic segmentation networks is the reconstructed complete point cloud, but in practical application scenarios, the vision devices often capture single frame point cloud data. In order to better adapt to the actual segmentation requirements in dynamic scenes, this paper proposes an online incremental point cloud semantic segmentation method, which inputs the existing saved point cloud and the currently captured point cloud into the network to make up for the lack of information in the single frame point cloud. The Transformer structure is added to the network to strengthen the fusion of contextual information. Triple Loss is introduced in the feature space to distinguish different types of point clouds in a fine-grained manner. The experimental results show that compared with the benchmark MCPNet model, the proposed semantic segmentation model improves mIoU by 2.8% and mAcc by 7% on the S3DIS Area5 dataset, further improving the accuracy of point cloud semantic segmentation.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-view Network with Transformer for Point Cloud Semantic Segmentation\",\"authors\":\"Zhongwei Hua, Daming Du\",\"doi\":\"10.1145/3529466.3529504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The input of most point cloud semantic segmentation networks is the reconstructed complete point cloud, but in practical application scenarios, the vision devices often capture single frame point cloud data. In order to better adapt to the actual segmentation requirements in dynamic scenes, this paper proposes an online incremental point cloud semantic segmentation method, which inputs the existing saved point cloud and the currently captured point cloud into the network to make up for the lack of information in the single frame point cloud. The Transformer structure is added to the network to strengthen the fusion of contextual information. Triple Loss is introduced in the feature space to distinguish different types of point clouds in a fine-grained manner. The experimental results show that compared with the benchmark MCPNet model, the proposed semantic segmentation model improves mIoU by 2.8% and mAcc by 7% on the S3DIS Area5 dataset, further improving the accuracy of point cloud semantic segmentation.\",\"PeriodicalId\":375562,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529466.3529504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数点云语义分割网络的输入是重构的完整点云,但在实际应用场景中,视觉设备往往捕获单帧点云数据。为了更好地适应动态场景下的实际分割要求,本文提出了一种在线增量点云语义分割方法,将现有保存的点云和当前捕获的点云输入到网络中,弥补单帧点云的信息不足。在网络中加入Transformer结构,加强上下文信息的融合。在特征空间中引入三重损失,以细粒度的方式区分不同类型的点云。实验结果表明,与基准MCPNet模型相比,本文提出的语义分割模型在S3DIS Area5数据集上的mIoU和mAcc分别提高了2.8%和7%,进一步提高了点云语义分割的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-view Network with Transformer for Point Cloud Semantic Segmentation
The input of most point cloud semantic segmentation networks is the reconstructed complete point cloud, but in practical application scenarios, the vision devices often capture single frame point cloud data. In order to better adapt to the actual segmentation requirements in dynamic scenes, this paper proposes an online incremental point cloud semantic segmentation method, which inputs the existing saved point cloud and the currently captured point cloud into the network to make up for the lack of information in the single frame point cloud. The Transformer structure is added to the network to strengthen the fusion of contextual information. Triple Loss is introduced in the feature space to distinguish different types of point clouds in a fine-grained manner. The experimental results show that compared with the benchmark MCPNet model, the proposed semantic segmentation model improves mIoU by 2.8% and mAcc by 7% on the S3DIS Area5 dataset, further improving the accuracy of point cloud semantic segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信