Borzoo Bonakdarpour, M. Bozga, Mohamad Jaber, J. Quilbeuf, J. Sifakis
{"title":"从基于组件的高级模型到分布式实现","authors":"Borzoo Bonakdarpour, M. Bozga, Mohamad Jaber, J. Quilbeuf, J. Sifakis","doi":"10.1145/1879021.1879049","DOIUrl":null,"url":null,"abstract":"Although distributed systems are widely used nowadays, their implementation and deployment is still a time-consuming, error-prone, and hardly predictive task. In this paper, we propose a methodology for producing automatically efficient and correct-by-construction distributed implementations by starting from a high-level model of the application software in BIP. BIP (Behavior, Interaction, Priority) is a component-based framework with formal semantics that rely on multi-party interactions for synchronizing components. Our methodology transforms arbitrary BIP models into Send/Receive BIP models, directly implementable on distributed execution platforms. The transformation consists of (1) breaking atomicity of actions in atomic components by replacing strong synchronizations with asynchronous Send/Receive interactions; (2) inserting several distributed controllers that coordinate execution of interactions according to a user-defined partition, and (3) augmenting the model with a distributed algorithm for handling conflicts between controllers preserving observational equivalence to the initial models. Currently, it is possible to generate from Send/Receive models stand-alone C++ implementations using either TCP sockets for conventional communication, or MPI implementation, for deployment on multi-core platforms. This method is fully implemented. We report concrete results obtained under different scenarios.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"From high-level component-based models to distributed implementations\",\"authors\":\"Borzoo Bonakdarpour, M. Bozga, Mohamad Jaber, J. Quilbeuf, J. Sifakis\",\"doi\":\"10.1145/1879021.1879049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although distributed systems are widely used nowadays, their implementation and deployment is still a time-consuming, error-prone, and hardly predictive task. In this paper, we propose a methodology for producing automatically efficient and correct-by-construction distributed implementations by starting from a high-level model of the application software in BIP. BIP (Behavior, Interaction, Priority) is a component-based framework with formal semantics that rely on multi-party interactions for synchronizing components. Our methodology transforms arbitrary BIP models into Send/Receive BIP models, directly implementable on distributed execution platforms. The transformation consists of (1) breaking atomicity of actions in atomic components by replacing strong synchronizations with asynchronous Send/Receive interactions; (2) inserting several distributed controllers that coordinate execution of interactions according to a user-defined partition, and (3) augmenting the model with a distributed algorithm for handling conflicts between controllers preserving observational equivalence to the initial models. Currently, it is possible to generate from Send/Receive models stand-alone C++ implementations using either TCP sockets for conventional communication, or MPI implementation, for deployment on multi-core platforms. This method is fully implemented. We report concrete results obtained under different scenarios.\",\"PeriodicalId\":143573,\"journal\":{\"name\":\"International Conference on Embedded Software\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1879021.1879049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1879021.1879049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From high-level component-based models to distributed implementations
Although distributed systems are widely used nowadays, their implementation and deployment is still a time-consuming, error-prone, and hardly predictive task. In this paper, we propose a methodology for producing automatically efficient and correct-by-construction distributed implementations by starting from a high-level model of the application software in BIP. BIP (Behavior, Interaction, Priority) is a component-based framework with formal semantics that rely on multi-party interactions for synchronizing components. Our methodology transforms arbitrary BIP models into Send/Receive BIP models, directly implementable on distributed execution platforms. The transformation consists of (1) breaking atomicity of actions in atomic components by replacing strong synchronizations with asynchronous Send/Receive interactions; (2) inserting several distributed controllers that coordinate execution of interactions according to a user-defined partition, and (3) augmenting the model with a distributed algorithm for handling conflicts between controllers preserving observational equivalence to the initial models. Currently, it is possible to generate from Send/Receive models stand-alone C++ implementations using either TCP sockets for conventional communication, or MPI implementation, for deployment on multi-core platforms. This method is fully implemented. We report concrete results obtained under different scenarios.