面向javascript的机器跟踪自动识别研究

Andrew J. Kaizer, Minaxi Gupta
{"title":"面向javascript的机器跟踪自动识别研究","authors":"Andrew J. Kaizer, Minaxi Gupta","doi":"10.1145/2875475.2875479","DOIUrl":null,"url":null,"abstract":"Machine-based tracking is a type of behavior that extracts information on a user's machine, which can then be used for fingerprinting, tracking, or profiling purposes. In this paper, we focus on JavaScript-oriented machine-based tracking as JavaScript is widely accessible in all browsers. We find that coarse features related to JavaScript access, cookie access, and URL length subdomain information can perform well in creating a classifier that can identify these machine-based trackers with 97.7% accuracy. We then use the classifier on real-world datasets based on 30-minute website crawls of different types of websites -- including websites that target children and websites that target a popular audience -- and find 85%+ of all websites utilize machine-based tracking, even when they target a regulated group (children) as their primary audience.","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Towards Automatic Identification of JavaScript-oriented Machine-Based Tracking\",\"authors\":\"Andrew J. Kaizer, Minaxi Gupta\",\"doi\":\"10.1145/2875475.2875479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-based tracking is a type of behavior that extracts information on a user's machine, which can then be used for fingerprinting, tracking, or profiling purposes. In this paper, we focus on JavaScript-oriented machine-based tracking as JavaScript is widely accessible in all browsers. We find that coarse features related to JavaScript access, cookie access, and URL length subdomain information can perform well in creating a classifier that can identify these machine-based trackers with 97.7% accuracy. We then use the classifier on real-world datasets based on 30-minute website crawls of different types of websites -- including websites that target children and websites that target a popular audience -- and find 85%+ of all websites utilize machine-based tracking, even when they target a regulated group (children) as their primary audience.\",\"PeriodicalId\":393015,\"journal\":{\"name\":\"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2875475.2875479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2875475.2875479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

基于机器的跟踪是一种从用户机器上提取信息的行为,这些信息可以用于指纹识别、跟踪或分析目的。在本文中,我们主要关注面向JavaScript的基于机器的跟踪,因为JavaScript在所有浏览器中都可以广泛访问。我们发现,与JavaScript访问、cookie访问和URL长度子域信息相关的粗糙特征可以很好地创建一个分类器,该分类器可以识别这些基于机器的跟踪器,准确率为97.7%。然后,我们在真实世界的数据集上使用分类器,这些数据集基于对不同类型网站(包括针对儿童的网站和针对流行受众的网站)进行30分钟的网站爬虫,并发现85%以上的网站使用基于机器的跟踪,即使它们针对的是受监管的群体(儿童)作为主要受众。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Automatic Identification of JavaScript-oriented Machine-Based Tracking
Machine-based tracking is a type of behavior that extracts information on a user's machine, which can then be used for fingerprinting, tracking, or profiling purposes. In this paper, we focus on JavaScript-oriented machine-based tracking as JavaScript is widely accessible in all browsers. We find that coarse features related to JavaScript access, cookie access, and URL length subdomain information can perform well in creating a classifier that can identify these machine-based trackers with 97.7% accuracy. We then use the classifier on real-world datasets based on 30-minute website crawls of different types of websites -- including websites that target children and websites that target a popular audience -- and find 85%+ of all websites utilize machine-based tracking, even when they target a regulated group (children) as their primary audience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信