参数化方差回归模型的递归再加权最小二乘估计

L. Pronzato, A. Pázman
{"title":"参数化方差回归模型的递归再加权最小二乘估计","authors":"L. Pronzato, A. Pázman","doi":"10.5281/ZENODO.38283","DOIUrl":null,"url":null,"abstract":"We consider a nonlinear regression model with parameterized variance and compare several methods of estimation: the Weighted Least-Squares (WLS) estimator; the two-stage LS (TSLS) estimator, where the LS estimator obtained at the first stage is plugged into the variance function used for WLS estimation at the second stage; and finally the recursively re-weighted LS (RWLS) estimator, where the LS estimator obtained after k observations is plugged into the variance function to compute the k-th weight for WLS estimation. We draw special attention to RWLS estimation which can be implemented recursively when the regression model in linear (even if the variance function is nonlinear), and is thus particularly attractive for signal processing applications.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recursively re-weighted least-squares estimation in regression models with parameterized variance\",\"authors\":\"L. Pronzato, A. Pázman\",\"doi\":\"10.5281/ZENODO.38283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a nonlinear regression model with parameterized variance and compare several methods of estimation: the Weighted Least-Squares (WLS) estimator; the two-stage LS (TSLS) estimator, where the LS estimator obtained at the first stage is plugged into the variance function used for WLS estimation at the second stage; and finally the recursively re-weighted LS (RWLS) estimator, where the LS estimator obtained after k observations is plugged into the variance function to compute the k-th weight for WLS estimation. We draw special attention to RWLS estimation which can be implemented recursively when the regression model in linear (even if the variance function is nonlinear), and is thus particularly attractive for signal processing applications.\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑了一个参数化方差的非线性回归模型,比较了几种估计方法:加权最小二乘(WLS)估计;两阶段LS (TSLS)估计量,将第一阶段得到的LS估计量代入第二阶段WLS估计的方差函数中;最后是递归重加权LS (RWLS)估计量,将k次观测后得到的LS估计量代入方差函数,计算WLS估计的第k个权值。我们特别关注RWLS估计,当回归模型是线性的(即使方差函数是非线性的)时,它可以递归地实现,因此对信号处理应用特别有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursively re-weighted least-squares estimation in regression models with parameterized variance
We consider a nonlinear regression model with parameterized variance and compare several methods of estimation: the Weighted Least-Squares (WLS) estimator; the two-stage LS (TSLS) estimator, where the LS estimator obtained at the first stage is plugged into the variance function used for WLS estimation at the second stage; and finally the recursively re-weighted LS (RWLS) estimator, where the LS estimator obtained after k observations is plugged into the variance function to compute the k-th weight for WLS estimation. We draw special attention to RWLS estimation which can be implemented recursively when the regression model in linear (even if the variance function is nonlinear), and is thus particularly attractive for signal processing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信