改进的系统云灰色神经网络模型

Sikun Yang
{"title":"改进的系统云灰色神经网络模型","authors":"Sikun Yang","doi":"10.1109/WGEC.2008.62","DOIUrl":null,"url":null,"abstract":"This paper improved and optimized the topology structure of the system cloud grey neural network model (SCGNNM (1,1)) and presented a novel SCGNNM (1,1) based on time response model. Because the dispersed data of time response model can be regarded as the data abstracted from the continued function, the model's precision can be improved greatly. Meantime, the learning algorithm is given. Finally, the proposed model is simulated and shown to be very reliable.","PeriodicalId":198475,"journal":{"name":"2008 Second International Conference on Genetic and Evolutionary Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved System Cloud Grey Neural Network Model\",\"authors\":\"Sikun Yang\",\"doi\":\"10.1109/WGEC.2008.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper improved and optimized the topology structure of the system cloud grey neural network model (SCGNNM (1,1)) and presented a novel SCGNNM (1,1) based on time response model. Because the dispersed data of time response model can be regarded as the data abstracted from the continued function, the model's precision can be improved greatly. Meantime, the learning algorithm is given. Finally, the proposed model is simulated and shown to be very reliable.\",\"PeriodicalId\":198475,\"journal\":{\"name\":\"2008 Second International Conference on Genetic and Evolutionary Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Genetic and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WGEC.2008.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2008.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对系统云灰色神经网络模型(SCGNNM(1,1))的拓扑结构进行了改进和优化,提出了一种基于时间响应模型的新型SCGNNM(1,1)。由于时间响应模型的离散数据可以看作是从连续函数中抽象出来的数据,因此可以大大提高模型的精度。同时,给出了学习算法。最后对该模型进行了仿真,结果表明该模型是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved System Cloud Grey Neural Network Model
This paper improved and optimized the topology structure of the system cloud grey neural network model (SCGNNM (1,1)) and presented a novel SCGNNM (1,1) based on time response model. Because the dispersed data of time response model can be regarded as the data abstracted from the continued function, the model's precision can be improved greatly. Meantime, the learning algorithm is given. Finally, the proposed model is simulated and shown to be very reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信