参数导出倒立摆的周期3运动

A. Luo, Chuan Guo
{"title":"参数导出倒立摆的周期3运动","authors":"A. Luo, Chuan Guo","doi":"10.1115/detc2020-22176","DOIUrl":null,"url":null,"abstract":"\n In this paper, period-3 motions in a parametrically exited inverted pendulum are analytically investigated through a discrete implicit mapping method. The corresponding stability and bifurcation conditions of the period-3 motions are predicted through eigenvalue analysis. The symmetric and asymmetric period-3 motions are obtained on the bifurcation tree, and the period-doubling bifurcations of the asymmetric period-3 motions are observed. The saddle-node and Neimark bifurcations for symmetric period-3 motions are obtained. The saddle-bifurcations of the symmetric period-3 motions are for symmetric motion appearance (or vanishing) and onsets of asymmetric period-3 motion. Numerical simulations of the period-3 motions in the inverted pendulum are completed from analytical predictions for illustration of motion complexity and characteristics.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Period-3 Motions in a Parametrically Exited Inverted Pendulum\",\"authors\":\"A. Luo, Chuan Guo\",\"doi\":\"10.1115/detc2020-22176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, period-3 motions in a parametrically exited inverted pendulum are analytically investigated through a discrete implicit mapping method. The corresponding stability and bifurcation conditions of the period-3 motions are predicted through eigenvalue analysis. The symmetric and asymmetric period-3 motions are obtained on the bifurcation tree, and the period-doubling bifurcations of the asymmetric period-3 motions are observed. The saddle-node and Neimark bifurcations for symmetric period-3 motions are obtained. The saddle-bifurcations of the symmetric period-3 motions are for symmetric motion appearance (or vanishing) and onsets of asymmetric period-3 motion. Numerical simulations of the period-3 motions in the inverted pendulum are completed from analytical predictions for illustration of motion complexity and characteristics.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用离散隐式映射方法,对参数导出倒立摆的周期运动进行了解析研究。通过特征值分析,预测了周期运动的稳定性和分岔条件。在分岔树上得到了对称和非对称的周期3运动,并观察了非对称周期3运动的倍周期分岔。得到了对称周期3运动的鞍节点分岔和Neimark分岔。对称3周期运动的鞍分岔是对称运动的出现(或消失)和非对称3周期运动的开始。通过对倒立摆三周期运动的分析预测,完成了倒立摆三周期运动的数值模拟,以说明倒立摆运动的复杂性和特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Period-3 Motions in a Parametrically Exited Inverted Pendulum
In this paper, period-3 motions in a parametrically exited inverted pendulum are analytically investigated through a discrete implicit mapping method. The corresponding stability and bifurcation conditions of the period-3 motions are predicted through eigenvalue analysis. The symmetric and asymmetric period-3 motions are obtained on the bifurcation tree, and the period-doubling bifurcations of the asymmetric period-3 motions are observed. The saddle-node and Neimark bifurcations for symmetric period-3 motions are obtained. The saddle-bifurcations of the symmetric period-3 motions are for symmetric motion appearance (or vanishing) and onsets of asymmetric period-3 motion. Numerical simulations of the period-3 motions in the inverted pendulum are completed from analytical predictions for illustration of motion complexity and characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信