Istamala Idha Retnoningsih, D. Dafik, Saddam Hussen
{"title":"Pewarnaan Titik pada Keluarga Graf Sentripetal","authors":"Istamala Idha Retnoningsih, D. Dafik, Saddam Hussen","doi":"10.25037/cgantjma.v3i1.75","DOIUrl":null,"url":null,"abstract":"The graph $G$ is defined as a pair of sets $(V,E)$ denoted by $G=(V,E)$, where $V$ is a non-empty vertex set and $E$ is an edge set may be empty connecting a pair of vertex. Two vertices $u$ and $v$ in the graph $G$ are said to be adjacent if $u$ and $v$ are endpoints of edge $e=uv$. The degree of a vertex $v$ on the graph $G$ is the number of vertices adjacent to the vertex $v$. In this study, the topic of graphs is vertex coloring will be studied. Coloring of a graph is giving color to the elements in the graph such that each adjacent element must have a different color. Vertex coloring in graph $G$ is assigning color to each vertex on graph $G$ such that the adjecent vertices $u$ and $v$ have different colors. The minimum number of colorings produced to color a vertex in a graph $G$ is called the vertex chromatic number in a graph $G$ denoted by $\\chi(G)$.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i1.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The graph $G$ is defined as a pair of sets $(V,E)$ denoted by $G=(V,E)$, where $V$ is a non-empty vertex set and $E$ is an edge set may be empty connecting a pair of vertex. Two vertices $u$ and $v$ in the graph $G$ are said to be adjacent if $u$ and $v$ are endpoints of edge $e=uv$. The degree of a vertex $v$ on the graph $G$ is the number of vertices adjacent to the vertex $v$. In this study, the topic of graphs is vertex coloring will be studied. Coloring of a graph is giving color to the elements in the graph such that each adjacent element must have a different color. Vertex coloring in graph $G$ is assigning color to each vertex on graph $G$ such that the adjecent vertices $u$ and $v$ have different colors. The minimum number of colorings produced to color a vertex in a graph $G$ is called the vertex chromatic number in a graph $G$ denoted by $\chi(G)$.