{"title":"孟加拉国车牌检测:级联学习与深度学习","authors":"M. Pias, Aunnoy K. Mutasim, M. Amin","doi":"10.1145/3095713.3095727","DOIUrl":null,"url":null,"abstract":"This work investigated two different machine learning techniques: Cascade Learning and Deep Learning, to find out which algorithm performs better to detect the number plate of vehicles registered in Bangladesh. To do this, we created a dataset of about 1000 images collected from a security camera of Independent University, Bangladesh. Each image in the dataset were then labelled manually by selecting the Region of Interest (ROI). In the Cascade Learning approach, a sliding window technique was used to detect objects. Then a cascade classifier was employed to determine if the window contained object of interest or not. In the Deep Learning approach, CIFAR-10 dataset was used to pre-train a 15-layer Convolutional Neural Network (CNN). Using this pretrained CNN, a Regions with CNN (R-CNN) was then trained using our dataset. We found that the Deep Learning approach (maximum accuracy 99.60% using 566 training images) outperforms the detector constructed using Cascade classifiers (maximum accuracy 59.52% using 566 positive and 1022 negative training images) for 252 test images.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bangladeshi Number Plate Detection: Cascade Learning vs. Deep Learning\",\"authors\":\"M. Pias, Aunnoy K. Mutasim, M. Amin\",\"doi\":\"10.1145/3095713.3095727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigated two different machine learning techniques: Cascade Learning and Deep Learning, to find out which algorithm performs better to detect the number plate of vehicles registered in Bangladesh. To do this, we created a dataset of about 1000 images collected from a security camera of Independent University, Bangladesh. Each image in the dataset were then labelled manually by selecting the Region of Interest (ROI). In the Cascade Learning approach, a sliding window technique was used to detect objects. Then a cascade classifier was employed to determine if the window contained object of interest or not. In the Deep Learning approach, CIFAR-10 dataset was used to pre-train a 15-layer Convolutional Neural Network (CNN). Using this pretrained CNN, a Regions with CNN (R-CNN) was then trained using our dataset. We found that the Deep Learning approach (maximum accuracy 99.60% using 566 training images) outperforms the detector constructed using Cascade classifiers (maximum accuracy 59.52% using 566 positive and 1022 negative training images) for 252 test images.\",\"PeriodicalId\":310224,\"journal\":{\"name\":\"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3095713.3095727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bangladeshi Number Plate Detection: Cascade Learning vs. Deep Learning
This work investigated two different machine learning techniques: Cascade Learning and Deep Learning, to find out which algorithm performs better to detect the number plate of vehicles registered in Bangladesh. To do this, we created a dataset of about 1000 images collected from a security camera of Independent University, Bangladesh. Each image in the dataset were then labelled manually by selecting the Region of Interest (ROI). In the Cascade Learning approach, a sliding window technique was used to detect objects. Then a cascade classifier was employed to determine if the window contained object of interest or not. In the Deep Learning approach, CIFAR-10 dataset was used to pre-train a 15-layer Convolutional Neural Network (CNN). Using this pretrained CNN, a Regions with CNN (R-CNN) was then trained using our dataset. We found that the Deep Learning approach (maximum accuracy 99.60% using 566 training images) outperforms the detector constructed using Cascade classifiers (maximum accuracy 59.52% using 566 positive and 1022 negative training images) for 252 test images.