f(R, T)引力理论的n维平面对称解

Sadia Sattar, M. Jamil Amir, Farhat Imtiaz, Aamir Zaman
{"title":"f(R, T)引力理论的n维平面对称解","authors":"Sadia Sattar, M. Jamil Amir, Farhat Imtiaz, Aamir Zaman","doi":"10.15406/paij.2019.03.00194","DOIUrl":null,"url":null,"abstract":"In this Paper, we have evaluated the N-dimensional plane-symmetric space times solutions in f(R,T) theory of gravity. For this purpose we use the more general class of f(R,T) model, i.e.,f(R,T)=f1(R)+f2(T). Here, also we make the assumption that f(R)αf0Rq, where f0 and q are arbitrary constants. To find the solutions, we assume the dust case with p=0. The field equations are solved by assuming exponential and power law forms of metric coefficient. Moreover, we have evaluated the energy densities and corresponding functions of f(R,T) model.","PeriodicalId":377724,"journal":{"name":"Physics & Astronomy International Journal","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-dimensional plane symmetric solutions in f(R, T) theory of gravity\",\"authors\":\"Sadia Sattar, M. Jamil Amir, Farhat Imtiaz, Aamir Zaman\",\"doi\":\"10.15406/paij.2019.03.00194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this Paper, we have evaluated the N-dimensional plane-symmetric space times solutions in f(R,T) theory of gravity. For this purpose we use the more general class of f(R,T) model, i.e.,f(R,T)=f1(R)+f2(T). Here, also we make the assumption that f(R)αf0Rq, where f0 and q are arbitrary constants. To find the solutions, we assume the dust case with p=0. The field equations are solved by assuming exponential and power law forms of metric coefficient. Moreover, we have evaluated the energy densities and corresponding functions of f(R,T) model.\",\"PeriodicalId\":377724,\"journal\":{\"name\":\"Physics & Astronomy International Journal\",\"volume\":\"2009 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics & Astronomy International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/paij.2019.03.00194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics & Astronomy International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/paij.2019.03.00194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了f(R,T)引力理论的n维平面对称时空解。为此,我们使用更一般的一类f(R,T)模型,即f(R,T)=f1(R)+f2(T)。这里,我们也假设f(R)αf0Rq,其中f0和q是任意常数。为了找到解,我们假设p=0的尘埃情况。通过假设度量系数的指数和幂律形式来求解场方程。此外,我们还计算了f(R,T)模型的能量密度和相应的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N-dimensional plane symmetric solutions in f(R, T) theory of gravity
In this Paper, we have evaluated the N-dimensional plane-symmetric space times solutions in f(R,T) theory of gravity. For this purpose we use the more general class of f(R,T) model, i.e.,f(R,T)=f1(R)+f2(T). Here, also we make the assumption that f(R)αf0Rq, where f0 and q are arbitrary constants. To find the solutions, we assume the dust case with p=0. The field equations are solved by assuming exponential and power law forms of metric coefficient. Moreover, we have evaluated the energy densities and corresponding functions of f(R,T) model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信