基于联合核密度估计和鲁棒特征描述子的多人脸跟踪

Hao Ji, Fei Su, Geng Du
{"title":"基于联合核密度估计和鲁棒特征描述子的多人脸跟踪","authors":"Hao Ji, Fei Su, Geng Du","doi":"10.1109/ICNIDC.2009.5360967","DOIUrl":null,"url":null,"abstract":"In this paper, we present a robust implementation of multi-face tracker using Joint Feature Model, Kalman filter-based Mean-shift and Speeded-Up Robust Features (SURF), which can tolerate interference caused by objects of similar color, partial occlusion, total occlusion, rotation and scale change. The Joint Feature Model for each person combines the non-parametric distribution of colors in the face region and gradient information of face, Mean-shift based on Kalman filter is adopted to update the position and velocity of the object in real-time and predict the locations in the subsequent frame, and SURF solves the object-recovery problem in occlusion. Experimental results demonstrate the efficiency of the tracking algorithm and the recovery capability even in case of total occlusion.","PeriodicalId":127306,"journal":{"name":"2009 IEEE International Conference on Network Infrastructure and Digital Content","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple faces tracking based on joint kernel density estimation and robust feature descriptors\",\"authors\":\"Hao Ji, Fei Su, Geng Du\",\"doi\":\"10.1109/ICNIDC.2009.5360967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a robust implementation of multi-face tracker using Joint Feature Model, Kalman filter-based Mean-shift and Speeded-Up Robust Features (SURF), which can tolerate interference caused by objects of similar color, partial occlusion, total occlusion, rotation and scale change. The Joint Feature Model for each person combines the non-parametric distribution of colors in the face region and gradient information of face, Mean-shift based on Kalman filter is adopted to update the position and velocity of the object in real-time and predict the locations in the subsequent frame, and SURF solves the object-recovery problem in occlusion. Experimental results demonstrate the efficiency of the tracking algorithm and the recovery capability even in case of total occlusion.\",\"PeriodicalId\":127306,\"journal\":{\"name\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2009.5360967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2009.5360967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于联合特征模型、基于卡尔曼滤波的Mean-shift和加速鲁棒特征(SURF)的多人脸跟踪器鲁棒实现方法,该方法可以容忍相似颜色、部分遮挡、完全遮挡、旋转和尺度变化引起的干扰。每个人的联合特征模型结合了人脸区域颜色的非参数分布和人脸的梯度信息,采用基于卡尔曼滤波的Mean-shift实时更新目标的位置和速度并预测后续帧中的位置,SURF解决了遮挡下的目标恢复问题。实验结果证明了该算法的有效性和在完全遮挡情况下的恢复能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple faces tracking based on joint kernel density estimation and robust feature descriptors
In this paper, we present a robust implementation of multi-face tracker using Joint Feature Model, Kalman filter-based Mean-shift and Speeded-Up Robust Features (SURF), which can tolerate interference caused by objects of similar color, partial occlusion, total occlusion, rotation and scale change. The Joint Feature Model for each person combines the non-parametric distribution of colors in the face region and gradient information of face, Mean-shift based on Kalman filter is adopted to update the position and velocity of the object in real-time and predict the locations in the subsequent frame, and SURF solves the object-recovery problem in occlusion. Experimental results demonstrate the efficiency of the tracking algorithm and the recovery capability even in case of total occlusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信