克服蓝色水域流行病模拟的可扩展性挑战

Jae-Seung Yeom, A. Bhatele, K. Bisset, Eric J. Bohm, Abhishek K. Gupta, L. Kalé, M. Marathe, Dimitrios S. Nikolopoulos, M. Schulz, Lukasz Wesolowski
{"title":"克服蓝色水域流行病模拟的可扩展性挑战","authors":"Jae-Seung Yeom, A. Bhatele, K. Bisset, Eric J. Bohm, Abhishek K. Gupta, L. Kalé, M. Marathe, Dimitrios S. Nikolopoulos, M. Schulz, Lukasz Wesolowski","doi":"10.1109/IPDPS.2014.83","DOIUrl":null,"url":null,"abstract":"Modeling dynamical systems represents an important application class covering a wide range of disciplines including but not limited to biology, chemistry, finance, national security, and health care. Such applications typically involve large-scale, irregular graph processing, which makes them difficult to scale due to the evolutionary nature of their workload, irregular communication and load imbalance. EpiSimdemics is such an application simulating epidemic diffusion in extremely large and realistic social contact networks. It implements a graph-based system that captures dynamics among co-evolving entities. This paper presents an implementation of EpiSimdemics in Charm++ that enables future research by social, biological and computational scientists at unprecedented data and system scales. We present new methods for application-specific processing of graph data and demonstrate the effectiveness of these methods on a Cray XE6, specifically NCSA's Blue Waters system.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Overcoming the Scalability Challenges of Epidemic Simulations on Blue Waters\",\"authors\":\"Jae-Seung Yeom, A. Bhatele, K. Bisset, Eric J. Bohm, Abhishek K. Gupta, L. Kalé, M. Marathe, Dimitrios S. Nikolopoulos, M. Schulz, Lukasz Wesolowski\",\"doi\":\"10.1109/IPDPS.2014.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling dynamical systems represents an important application class covering a wide range of disciplines including but not limited to biology, chemistry, finance, national security, and health care. Such applications typically involve large-scale, irregular graph processing, which makes them difficult to scale due to the evolutionary nature of their workload, irregular communication and load imbalance. EpiSimdemics is such an application simulating epidemic diffusion in extremely large and realistic social contact networks. It implements a graph-based system that captures dynamics among co-evolving entities. This paper presents an implementation of EpiSimdemics in Charm++ that enables future research by social, biological and computational scientists at unprecedented data and system scales. We present new methods for application-specific processing of graph data and demonstrate the effectiveness of these methods on a Cray XE6, specifically NCSA's Blue Waters system.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

动态系统建模是一门重要的应用课程,涵盖了广泛的学科,包括但不限于生物、化学、金融、国家安全和卫生保健。这类应用程序通常涉及大规模、不规则的图形处理,由于其工作负载的演化性质、不规则的通信和负载不平衡,这使得它们难以扩展。episimdemic就是这样一个应用程序,它可以模拟流行病在超大的现实社会接触网络中的传播。它实现了一个基于图的系统,可以捕获共同进化实体之间的动态。本文介绍了episimdemic在Charm++中的实现,使社会、生物和计算科学家能够在前所未有的数据和系统规模上进行未来的研究。我们提出了针对特定应用程序处理图形数据的新方法,并在Cray XE6上演示了这些方法的有效性,特别是NCSA的Blue Waters系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming the Scalability Challenges of Epidemic Simulations on Blue Waters
Modeling dynamical systems represents an important application class covering a wide range of disciplines including but not limited to biology, chemistry, finance, national security, and health care. Such applications typically involve large-scale, irregular graph processing, which makes them difficult to scale due to the evolutionary nature of their workload, irregular communication and load imbalance. EpiSimdemics is such an application simulating epidemic diffusion in extremely large and realistic social contact networks. It implements a graph-based system that captures dynamics among co-evolving entities. This paper presents an implementation of EpiSimdemics in Charm++ that enables future research by social, biological and computational scientists at unprecedented data and system scales. We present new methods for application-specific processing of graph data and demonstrate the effectiveness of these methods on a Cray XE6, specifically NCSA's Blue Waters system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信