基于滑模控制的不确定混沌系统同步

J. L. Mata, R. Martínez-Guerra, R. Aguilar, Carlos Aguilar
{"title":"基于滑模控制的不确定混沌系统同步","authors":"J. L. Mata, R. Martínez-Guerra, R. Aguilar, Carlos Aguilar","doi":"10.1109/VSS.2010.5544530","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the synchronization and parameter estimations of an uncertain Rikitake system. The strategy consists of proposing a slave system which has to follow asymptotically the unknown Rikitake system, refereed as master system. The gains of the slave system are adjusted continually according to a convenient adaptation control law, until the measurable output errors converge to zero. The convergence analysis is carried out by using Barbalat's Lemma.","PeriodicalId":407705,"journal":{"name":"2010 11th International Workshop on Variable Structure Systems (VSS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synchronization of an uncertain chaotic system based on sliding mode control\",\"authors\":\"J. L. Mata, R. Martínez-Guerra, R. Aguilar, Carlos Aguilar\",\"doi\":\"10.1109/VSS.2010.5544530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we deal with the synchronization and parameter estimations of an uncertain Rikitake system. The strategy consists of proposing a slave system which has to follow asymptotically the unknown Rikitake system, refereed as master system. The gains of the slave system are adjusted continually according to a convenient adaptation control law, until the measurable output errors converge to zero. The convergence analysis is carried out by using Barbalat's Lemma.\",\"PeriodicalId\":407705,\"journal\":{\"name\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2010.5544530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2010.5544530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了不确定Rikitake系统的同步和参数估计问题。该策略包括提出一个奴隶系统,该系统必须渐进地遵循未知的Rikitake系统,称为主系统。根据方便的自适应控制律不断调整从系统的增益,直到可测输出误差收敛于零。利用Barbalat引理进行收敛性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of an uncertain chaotic system based on sliding mode control
In this paper we deal with the synchronization and parameter estimations of an uncertain Rikitake system. The strategy consists of proposing a slave system which has to follow asymptotically the unknown Rikitake system, refereed as master system. The gains of the slave system are adjusted continually according to a convenient adaptation control law, until the measurable output errors converge to zero. The convergence analysis is carried out by using Barbalat's Lemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信