次模多路划分的近似算法

C. Chekuri, Alina Ene
{"title":"次模多路划分的近似算法","authors":"C. Chekuri, Alina Ene","doi":"10.1109/FOCS.2011.34","DOIUrl":null,"url":null,"abstract":"We study algorithms for the {\\sc Sub modular Multiway Partition}problem (\\SubMP). An instance of \\SubMP consists of a finite ground set $V$, a subset $S = \\{s_1,s_2,\\ldots,s_k\\} \\subseteq V$ of $k$elements called terminals, and a non-negative sub modular set function$f:2^V\\rightarrow \\mathbb{R}_+$ on $V$ provided as a value oracle. The goal is to partition $V$ into $k$ sets $A_1,\\ldots,A_k$ to minimize $\\sum_{i=1}^kf(A_i)$ such that for $1 \\le i \\le k$, $s_i \\inA_i$. \\SubMP generalizes some well-known problems such as the {\\scMultiway Cut} problem in graphs and hyper graphs, and the {\\scNode-weighed Multiway Cut} problem in graphs. \\SubMP for arbitrary sub modular functions (instead of just symmetric functions) was considered by Zhao, Nagamochi and Ibaraki \\cite{ZhaoNI05}. Previous algorithms were based on greedy splitting and divide and conquer strategies. In recent work \\cite{ChekuriE11} we proposed a convex-programming relaxation for \\SubMP based on the Lov\\'asz-extension of a sub modular function and showed its applicability for some special cases. In this paper we obtain the following results for arbitrary sub modular functions via this relaxation. \\begin{itemize} \\item A $2$-approximation for \\SubMP. This improves the $(k-1)$-approximation from \\cite{ZhaoNI05}. \\item A $(1.5-\\frac{1}{k})$-approximation for \\SubMP when $f$ is {\\em symmetric}. This improves the $2(1-\\frac{1}{k})$-approximation from \\cite{Queyranne99, ZhaoNI05}.\\end{itemize}","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Approximation Algorithms for Submodular Multiway Partition\",\"authors\":\"C. Chekuri, Alina Ene\",\"doi\":\"10.1109/FOCS.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study algorithms for the {\\\\sc Sub modular Multiway Partition}problem (\\\\SubMP). An instance of \\\\SubMP consists of a finite ground set $V$, a subset $S = \\\\{s_1,s_2,\\\\ldots,s_k\\\\} \\\\subseteq V$ of $k$elements called terminals, and a non-negative sub modular set function$f:2^V\\\\rightarrow \\\\mathbb{R}_+$ on $V$ provided as a value oracle. The goal is to partition $V$ into $k$ sets $A_1,\\\\ldots,A_k$ to minimize $\\\\sum_{i=1}^kf(A_i)$ such that for $1 \\\\le i \\\\le k$, $s_i \\\\inA_i$. \\\\SubMP generalizes some well-known problems such as the {\\\\scMultiway Cut} problem in graphs and hyper graphs, and the {\\\\scNode-weighed Multiway Cut} problem in graphs. \\\\SubMP for arbitrary sub modular functions (instead of just symmetric functions) was considered by Zhao, Nagamochi and Ibaraki \\\\cite{ZhaoNI05}. Previous algorithms were based on greedy splitting and divide and conquer strategies. In recent work \\\\cite{ChekuriE11} we proposed a convex-programming relaxation for \\\\SubMP based on the Lov\\\\'asz-extension of a sub modular function and showed its applicability for some special cases. In this paper we obtain the following results for arbitrary sub modular functions via this relaxation. \\\\begin{itemize} \\\\item A $2$-approximation for \\\\SubMP. This improves the $(k-1)$-approximation from \\\\cite{ZhaoNI05}. \\\\item A $(1.5-\\\\frac{1}{k})$-approximation for \\\\SubMP when $f$ is {\\\\em symmetric}. This improves the $2(1-\\\\frac{1}{k})$-approximation from \\\\cite{Queyranne99, ZhaoNI05}.\\\\end{itemize}\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

我们研究了{\sc子模块多路分区}问题的算法(\SubMP)。\SubMP的实例由一个有限的基础集$V$、一个称为终端的$k$元素子集$S = \{s_1,s_2,\ldots,s_k\} \subseteq V$和一个在$V$上作为值oracle提供的非负子模集函数$f:2^V\rightarrow \mathbb{R}_+$组成。目标是将$V$划分为$k$集$A_1,\ldots,A_k$,以最小化$\sum_{i=1}^kf(A_i)$,以便于$1 \le i \le k$、$s_i \inA_i$。\SubMP推广了一些众所周知的问题,如{\scMultiway图和超图中的切问题,以及}{\scNode加权}图中的多路切问题。\SubMP任意子模函数(而不仅仅是对称函数)是由Zhao, Nagamochi和Ibaraki考虑的\cite{ZhaoNI05}。以前的算法是基于贪婪分割和分而治之策略。在最近的工作\cite{ChekuriE11}中,我们提出了一个基于子模函数Lovász-extension的\SubMP的凸规划松弛,并证明了它在一些特殊情况下的适用性。本文利用这种松弛得到了任意子模函数的如下结果。 \begin{itemize} \item\SubMP的$2$ -近似。这改进了\cite{ZhaoNI05}的$(k-1)$ -近似。 \item 当$f$是的时,\SubMP的$(1.5-\frac{1}{k})$ -近似。这改进了{\em}\cite{Queyranne99, ZhaoNI05}的$2(1-\frac{1}{k})$ -近似。\end{itemize}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Algorithms for Submodular Multiway Partition
We study algorithms for the {\sc Sub modular Multiway Partition}problem (\SubMP). An instance of \SubMP consists of a finite ground set $V$, a subset $S = \{s_1,s_2,\ldots,s_k\} \subseteq V$ of $k$elements called terminals, and a non-negative sub modular set function$f:2^V\rightarrow \mathbb{R}_+$ on $V$ provided as a value oracle. The goal is to partition $V$ into $k$ sets $A_1,\ldots,A_k$ to minimize $\sum_{i=1}^kf(A_i)$ such that for $1 \le i \le k$, $s_i \inA_i$. \SubMP generalizes some well-known problems such as the {\scMultiway Cut} problem in graphs and hyper graphs, and the {\scNode-weighed Multiway Cut} problem in graphs. \SubMP for arbitrary sub modular functions (instead of just symmetric functions) was considered by Zhao, Nagamochi and Ibaraki \cite{ZhaoNI05}. Previous algorithms were based on greedy splitting and divide and conquer strategies. In recent work \cite{ChekuriE11} we proposed a convex-programming relaxation for \SubMP based on the Lov\'asz-extension of a sub modular function and showed its applicability for some special cases. In this paper we obtain the following results for arbitrary sub modular functions via this relaxation. \begin{itemize} \item A $2$-approximation for \SubMP. This improves the $(k-1)$-approximation from \cite{ZhaoNI05}. \item A $(1.5-\frac{1}{k})$-approximation for \SubMP when $f$ is {\em symmetric}. This improves the $2(1-\frac{1}{k})$-approximation from \cite{Queyranne99, ZhaoNI05}.\end{itemize}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信