用最小泛化建模英语过去时直觉

Adam Albright, B. Hayes
{"title":"用最小泛化建模英语过去时直觉","authors":"Adam Albright, B. Hayes","doi":"10.3115/1118647.1118654","DOIUrl":null,"url":null,"abstract":"We describe here a supervised learning model that, given paradigms of related words, learns the morphological and phonological rules needed to derive the paradigm. The model can use its rules to make guesses about how novel forms would be inflected, and has been tested experimentally against the intuitions of human speakers.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"Modeling English Past Tense Intuitions with Minimal Generalization\",\"authors\":\"Adam Albright, B. Hayes\",\"doi\":\"10.3115/1118647.1118654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe here a supervised learning model that, given paradigms of related words, learns the morphological and phonological rules needed to derive the paradigm. The model can use its rules to make guesses about how novel forms would be inflected, and has been tested experimentally against the intuitions of human speakers.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1118647.1118654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118647.1118654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

摘要

我们在这里描述了一个监督学习模型,给定相关单词的范式,学习派生范式所需的形态和语音规则。该模型可以利用它的规则来猜测新形式将如何发生变化,并且已经与人类说话者的直觉进行了实验测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling English Past Tense Intuitions with Minimal Generalization
We describe here a supervised learning model that, given paradigms of related words, learns the morphological and phonological rules needed to derive the paradigm. The model can use its rules to make guesses about how novel forms would be inflected, and has been tested experimentally against the intuitions of human speakers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信