C. Hou, Wen-Pin Chang, Yu-Hsiang Teng, Kuo-Jui Lee
{"title":"感应电力传输系统用平面螺旋线圈","authors":"C. Hou, Wen-Pin Chang, Yu-Hsiang Teng, Kuo-Jui Lee","doi":"10.1109/IFEEC.2015.7361398","DOIUrl":null,"url":null,"abstract":"This study discusses the inductive power transfer (IPT) system based on planar spiral coils. The primary series resonant and secondary parallel resonant (SP) topology and secondary parallel resonant (P) topology are utilized for the IPT system under varied air gap. The transfer function and frequency response of the SP topology and P topology for the IPT system are derived. The simulation results and test results under varied air gap are presented to validate the performances of the proposed scheme.","PeriodicalId":268430,"journal":{"name":"2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Planar spiral coils for inductive power transfer systems\",\"authors\":\"C. Hou, Wen-Pin Chang, Yu-Hsiang Teng, Kuo-Jui Lee\",\"doi\":\"10.1109/IFEEC.2015.7361398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study discusses the inductive power transfer (IPT) system based on planar spiral coils. The primary series resonant and secondary parallel resonant (SP) topology and secondary parallel resonant (P) topology are utilized for the IPT system under varied air gap. The transfer function and frequency response of the SP topology and P topology for the IPT system are derived. The simulation results and test results under varied air gap are presented to validate the performances of the proposed scheme.\",\"PeriodicalId\":268430,\"journal\":{\"name\":\"2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFEEC.2015.7361398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFEEC.2015.7361398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Planar spiral coils for inductive power transfer systems
This study discusses the inductive power transfer (IPT) system based on planar spiral coils. The primary series resonant and secondary parallel resonant (SP) topology and secondary parallel resonant (P) topology are utilized for the IPT system under varied air gap. The transfer function and frequency response of the SP topology and P topology for the IPT system are derived. The simulation results and test results under varied air gap are presented to validate the performances of the proposed scheme.