基于支持向量机和元启发式方法的MRI脑肿瘤分类

A. Kharrat, Mohamed Ben Halima, Mounir Ben Ayed
{"title":"基于支持向量机和元启发式方法的MRI脑肿瘤分类","authors":"A. Kharrat, Mohamed Ben Halima, Mounir Ben Ayed","doi":"10.1109/ISDA.2015.7489271","DOIUrl":null,"url":null,"abstract":"We present a development of a new approach for automated diagnosis, based on classification of Magnetic Resonance (MR) human brain images. 2D Wavelet Transform and Spatial Gray Level Dependence Matrix (DWT-SGLDM) is used for feature extraction. For feature selection Simulated Annealing (SA) is applied to reduce features size. The next step in our approach is Stratified K-fold Cross Validation to avoid overfitting. To optimize support vector machine (SVM) parameters we use Genetic Algorithm and Support Vector Machine (GA-SVM) model. SVM is applied to construct the classifier. An intelligent classification rate of 95,6522% could be achieved using the support vector machine.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"MRI brain tumor classification using Support Vector Machines and meta-heuristic method\",\"authors\":\"A. Kharrat, Mohamed Ben Halima, Mounir Ben Ayed\",\"doi\":\"10.1109/ISDA.2015.7489271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a development of a new approach for automated diagnosis, based on classification of Magnetic Resonance (MR) human brain images. 2D Wavelet Transform and Spatial Gray Level Dependence Matrix (DWT-SGLDM) is used for feature extraction. For feature selection Simulated Annealing (SA) is applied to reduce features size. The next step in our approach is Stratified K-fold Cross Validation to avoid overfitting. To optimize support vector machine (SVM) parameters we use Genetic Algorithm and Support Vector Machine (GA-SVM) model. SVM is applied to construct the classifier. An intelligent classification rate of 95,6522% could be achieved using the support vector machine.\",\"PeriodicalId\":196743,\"journal\":{\"name\":\"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2015.7489271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

我们提出了一种基于磁共振(MR)人脑图像分类的自动诊断新方法。采用二维小波变换和空间灰度相关性矩阵(DWT-SGLDM)进行特征提取。在特征选择方面,采用模拟退火(SA)方法减小特征尺寸。我们方法的下一步是分层K-fold交叉验证,以避免过拟合。为了优化支持向量机参数,我们采用遗传算法和支持向量机模型。采用支持向量机构造分类器。使用支持向量机可以实现95,6522%的智能分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI brain tumor classification using Support Vector Machines and meta-heuristic method
We present a development of a new approach for automated diagnosis, based on classification of Magnetic Resonance (MR) human brain images. 2D Wavelet Transform and Spatial Gray Level Dependence Matrix (DWT-SGLDM) is used for feature extraction. For feature selection Simulated Annealing (SA) is applied to reduce features size. The next step in our approach is Stratified K-fold Cross Validation to avoid overfitting. To optimize support vector machine (SVM) parameters we use Genetic Algorithm and Support Vector Machine (GA-SVM) model. SVM is applied to construct the classifier. An intelligent classification rate of 95,6522% could be achieved using the support vector machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信