多智能体自组织安全系统的群体感应模式

J. Hamar, R. Dove
{"title":"多智能体自组织安全系统的群体感应模式","authors":"J. Hamar, R. Dove","doi":"10.1109/CCST.2012.6393579","DOIUrl":null,"url":null,"abstract":"Swarm concepts of various types borrowed from nature have been proposed for multi-agent security approaches. Distributed decision-making in multi-agent systems is of particular interest, and has good application in large networks with end-point agents looking for anomalies and potential threat indications, which in isolation may mean nothing. Quorum sensing (QS) in bacterial systems and Honeybee nest-site selection are two examples of distributed decision making in nature that show promise for reuse in reaching collective conclusions and triggering action in networked cyber systems. This paper examines these two cases of QS in nature and abstracts a generic pattern that qualifies for self-organizing security according to six SAREPH characteristics covered in prior work. The pattern form and qualifying characteristics from this prior work are briefly outlined, and QS in the two different natural systems is shown to reach a tipping point based on the density of independent agents with relevant similarities. The inter-agent signaling mechanisms are shown to be central to the process, and the abstracted core pattern is discussed with the conflicting forces that have to be resolved in any application of the pattern. Illustrative examples of both deployed and proposed security approaches are then shown employing this pattern, along with a pseudo-code model for an appropriate signaling mechanism inspired by a paper on social network quorum achievement.","PeriodicalId":405531,"journal":{"name":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A quorum sensing pattern for multi-agent self-organizing security systems\",\"authors\":\"J. Hamar, R. Dove\",\"doi\":\"10.1109/CCST.2012.6393579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swarm concepts of various types borrowed from nature have been proposed for multi-agent security approaches. Distributed decision-making in multi-agent systems is of particular interest, and has good application in large networks with end-point agents looking for anomalies and potential threat indications, which in isolation may mean nothing. Quorum sensing (QS) in bacterial systems and Honeybee nest-site selection are two examples of distributed decision making in nature that show promise for reuse in reaching collective conclusions and triggering action in networked cyber systems. This paper examines these two cases of QS in nature and abstracts a generic pattern that qualifies for self-organizing security according to six SAREPH characteristics covered in prior work. The pattern form and qualifying characteristics from this prior work are briefly outlined, and QS in the two different natural systems is shown to reach a tipping point based on the density of independent agents with relevant similarities. The inter-agent signaling mechanisms are shown to be central to the process, and the abstracted core pattern is discussed with the conflicting forces that have to be resolved in any application of the pattern. Illustrative examples of both deployed and proposed security approaches are then shown employing this pattern, along with a pseudo-code model for an appropriate signaling mechanism inspired by a paper on social network quorum achievement.\",\"PeriodicalId\":405531,\"journal\":{\"name\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2012.6393579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2012.6393579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对多智能体安全方法,提出了从自然界借鉴的各种类型的群体概念。多智能体系统中的分布式决策是一个特别有趣的问题,它在具有端点智能体的大型网络中有很好的应用,这些端点智能体寻找异常和潜在的威胁迹象,这些迹象在孤立情况下可能没有任何意义。细菌系统中的群体感应(Quorum sensing, QS)和蜂巢选址是分布式决策的两个例子,它们在网络系统中可以重复使用,从而得出集体结论和触发行动。本文从本质上考察了这两种情况,并根据先前工作中涉及的六个SAREPH特征抽象出一个符合自组织安全性的通用模式。本文简要概述了先前工作的模式形式和资格特征,并表明两种不同自然系统中的QS基于具有相关相似性的独立代理的密度达到临界点。代理间的信号机制是流程的核心,抽象的核心模式与必须在模式的任何应用中解决的冲突力量进行了讨论。然后展示了使用此模式的已部署和建议的安全方法的说说性示例,以及受一篇关于社交网络quorum成就的论文启发的适当信号机制的伪代码模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quorum sensing pattern for multi-agent self-organizing security systems
Swarm concepts of various types borrowed from nature have been proposed for multi-agent security approaches. Distributed decision-making in multi-agent systems is of particular interest, and has good application in large networks with end-point agents looking for anomalies and potential threat indications, which in isolation may mean nothing. Quorum sensing (QS) in bacterial systems and Honeybee nest-site selection are two examples of distributed decision making in nature that show promise for reuse in reaching collective conclusions and triggering action in networked cyber systems. This paper examines these two cases of QS in nature and abstracts a generic pattern that qualifies for self-organizing security according to six SAREPH characteristics covered in prior work. The pattern form and qualifying characteristics from this prior work are briefly outlined, and QS in the two different natural systems is shown to reach a tipping point based on the density of independent agents with relevant similarities. The inter-agent signaling mechanisms are shown to be central to the process, and the abstracted core pattern is discussed with the conflicting forces that have to be resolved in any application of the pattern. Illustrative examples of both deployed and proposed security approaches are then shown employing this pattern, along with a pseudo-code model for an appropriate signaling mechanism inspired by a paper on social network quorum achievement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信