基于MLP神经网络的自动测量处理

D. Lacrama, Vasile Gherheș, F. Alexa, T. M. Karnyanszky
{"title":"基于MLP神经网络的自动测量处理","authors":"D. Lacrama, Vasile Gherheș, F. Alexa, T. M. Karnyanszky","doi":"10.1109/NEUREL.2010.5644092","DOIUrl":null,"url":null,"abstract":"This paper presents a method to automatically process the education quality assessment quiz test. The propose technique use Pattern Recognition methodology and the final decision is taken using a MLP neural network. The Xj subject's answers are numerically encoded in a descriptor vector VXj. This vector is fed to the net and it decides the Xj's degree of satisfaction or dissatisfaction over the most important characteristics of the educational process in a faculty or a university.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic survey processing using a MLP neural net\",\"authors\":\"D. Lacrama, Vasile Gherheș, F. Alexa, T. M. Karnyanszky\",\"doi\":\"10.1109/NEUREL.2010.5644092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to automatically process the education quality assessment quiz test. The propose technique use Pattern Recognition methodology and the final decision is taken using a MLP neural network. The Xj subject's answers are numerically encoded in a descriptor vector VXj. This vector is fed to the net and it decides the Xj's degree of satisfaction or dissatisfaction over the most important characteristics of the educational process in a faculty or a university.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种自动处理教育质量评估测验的方法。该技术采用模式识别方法,并使用MLP神经网络进行最终决策。Xj主题的答案在描述符向量VXj中进行数字编码。这个向量被输入到网络中,它决定了Xj对一个学院或一所大学教育过程中最重要的特征的满意或不满意程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic survey processing using a MLP neural net
This paper presents a method to automatically process the education quality assessment quiz test. The propose technique use Pattern Recognition methodology and the final decision is taken using a MLP neural network. The Xj subject's answers are numerically encoded in a descriptor vector VXj. This vector is fed to the net and it decides the Xj's degree of satisfaction or dissatisfaction over the most important characteristics of the educational process in a faculty or a university.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信