基于机器学习方法的鲁棒多算法目标识别

Tobias Fromm, B. Staehle, W. Ertel
{"title":"基于机器学习方法的鲁棒多算法目标识别","authors":"Tobias Fromm, B. Staehle, W. Ertel","doi":"10.1109/MFI.2012.6343014","DOIUrl":null,"url":null,"abstract":"Robust object recognition is a crucial requirement for many robotic applications. We propose a method towards increasing reliability and flexibility of object recognition for robotics. This is achieved by the fusion of diverse recognition frameworks and algorithms on score level which use characteristics like shape, texture and color of the objects. Machine Learning allows for the automatic combination of the respective recognition methods' outputs instead of having to adapt their hypothesis metrics to a common basis. We show the applicability of our approach through several real-world experiments in a service robotics environment. Great importance is attached to robustness, especially in varying environments.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust multi-algorithm object recognition using Machine Learning methods\",\"authors\":\"Tobias Fromm, B. Staehle, W. Ertel\",\"doi\":\"10.1109/MFI.2012.6343014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust object recognition is a crucial requirement for many robotic applications. We propose a method towards increasing reliability and flexibility of object recognition for robotics. This is achieved by the fusion of diverse recognition frameworks and algorithms on score level which use characteristics like shape, texture and color of the objects. Machine Learning allows for the automatic combination of the respective recognition methods' outputs instead of having to adapt their hypothesis metrics to a common basis. We show the applicability of our approach through several real-world experiments in a service robotics environment. Great importance is attached to robustness, especially in varying environments.\",\"PeriodicalId\":103145,\"journal\":{\"name\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2012.6343014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

鲁棒的目标识别是许多机器人应用的关键要求。我们提出了一种提高机器人物体识别可靠性和灵活性的方法。这是通过在分数水平上融合多种识别框架和算法来实现的,这些框架和算法利用了物体的形状、纹理和颜色等特征。机器学习允许自动组合各自识别方法的输出,而不必将它们的假设指标调整到一个共同的基础上。我们通过服务机器人环境中的几个实际实验展示了我们的方法的适用性。鲁棒性非常重要,特别是在变化的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust multi-algorithm object recognition using Machine Learning methods
Robust object recognition is a crucial requirement for many robotic applications. We propose a method towards increasing reliability and flexibility of object recognition for robotics. This is achieved by the fusion of diverse recognition frameworks and algorithms on score level which use characteristics like shape, texture and color of the objects. Machine Learning allows for the automatic combination of the respective recognition methods' outputs instead of having to adapt their hypothesis metrics to a common basis. We show the applicability of our approach through several real-world experiments in a service robotics environment. Great importance is attached to robustness, especially in varying environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信